December 16, 2008

MM5483 Liquid Crystal Display Driver

MM5483 Liquid Crystal Display Driver

General Description

The MM5483 is a monolithic integrated circuit utilizing CMOS metal-gate low-threshold enhancement mode devices. It is available in a 40-pin molded package. The chip can drive up to 31 segments of LCD and can be cascaded to increase this number. This chip is capable of driving a $4\frac{1}{2}$ -digit 7-segment display with minimal interface between the display and the data source.

The MM5483 stores the display data in latches after it is latched in, and holds the data until another load pulse is received.

Features

- Serial data input
- Serial data output
- Wide power supply operation
- TTL compatibility
- 31 segment outputs
- Alphanumeric and bar graph capability
- Cascade capability

Applications

- COPS[™] or microprocessor displays
- Industrial control indicator
- Digital clock, thermometer, counter, voltmeter
- Instrumentation readouts
- Remote displays

FIGURE 1. MM5483 Block Diagram

Block Diagram

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage at Any Pin **Operating Temperature** -40°C to +85°C

DC Electrical Characteristics

 T_A within operating range, V_{DD} = 3.0V to 10V, V_{SS} = 0V, unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
Power Supply		3.0		10	V
Average Supply Current, I _{DD}	All Outputs Bits = Open, Data Out = Open, BP_Out = Open, Clock In = $0V$, Data In = $0V$, Data Load = $0V$, Osc In = $0V$, BP, In = $32Hz$				
	$V_{\text{DD}} = 3.0\text{V}$		1.5	2.5	μΑ
	$V_{DD} = 5.0V$			10	μA
	$V_{DD} = 10.0V$			40	μA
Input Voltage Levels	Load, Clock, Data				
Logic "0"	$V_{DD} = 5.0 V$			0.9	V
Logic "1"	$V_{DD} = 5.0 V$	2.4			V
Logic "0"	$V_{DD} = 3.0V$			0.4	V
Logic "1"	$V_{DD} = 3.0V$	2.0			V
Output Current Levels Segments and Data Out					
Sink	$V_{DD} = 3.0V, V_{OUT} = 0.3V$	20			μA
Source	$V_{DD} = 3.0V, V_{OUT} = 2.7V$	20			μΑ
BP Out Sink	V _{DD} = 3.0V, V _{OUT} = 0.3V	320			μA
BP Out Source	$V_{DD} = 3.0V, V_{OUT} = 2.7V$	320			μA

AC Electrical Characteristics

 $V_{DD} \ge 4.7V, V_{SS} = 0V$ unless otherwise specified

Symbol	Parameter		Min	Тур	Max	Units
f _C	Clock Frequency, V _{DD} = 3V				500	kHz
t _{CH}	Clock Period High	(Notes 2, 3)	500			ns
t _{CL}	Clock Period Low		500			ns
t _{DS}	Data Set-Up before Clock		300			ns
t _{DH}	Data Hold Time after Clock		100			ns
t _{LW}	Minimum Load Pulse Width		500			ns
t _{LTC}	Load to Clock		400			ns
t _{CDO}	Clock to Data Valid			400	750	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: AC input waveform specification for test purpose: $t_r \le 20$ ns, $t_r \le 20$ ns, f = 500 kHz, $50\% \pm 10\%$ duty cycle.

Note 3: Clock input rise and fall times must not exceed 300 ms.

Note 4: Output offset voltage is $\pm 50 \text{ mV}$ with $C_{\text{SEGMENT}} = 250 \text{ pF}$, $C_{\text{BP}} = 8750 \text{ pF}$.

 $\rm V_{SS}$ to $\rm V_{SS}$ +10V

Power Dissipation Junction Temperature

Storage Temperature

Lead Temperature (Soldering, 10 seconds)

300°C

+150°C

-65°C to +150°C

300 mW at +85°C

350 mW at +25°C

Functional Description

A block diagram for the MM5483 is shown in *Figure 1* and a package pinout is shown in *Figure 2. Figure 3* shows a possible 3-wire connection system with a typical signal format for *Figure 3.* Shown in *Figure 4*, the load input is an asynchronous input and lets data through from the shift register to the output buffers any time it is high. The load input can be connected to V_{DD} for 2-wire control as shown in *Figure 5.* In the 2-wire

control mode, 31 bits (or less depending on the number of segments used) of data are clocked into the MM5483 in a short time frame (with less than 0.1 second there probably will be no noticeable flicker) with no more clocks until new information is to be displayed. If data was slowly clocked in, it can be seen to "walk" across the display in the 2-wire mode. An AC timing diagram can be seen in *Figure 6*. It should be noted that data out is not a TTL-compatible output.

MM5483

Physical Dimensions inches (millimeters) unless otherwise noted

MM5483

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	Solar Magic®	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com