
RabbitCore RCM3700
C-Programmable Core Module

with Ethernet, Serial Flash, and Enhanced Software

User’s Manual
019–0136 • 071102–J



Rabbit Semiconductor Inc.
www.rabbit.com

RabbitCore RCM3700 User’s Manual

Part Number 019-0136 • 071102–J • Printed in U.S.A.
©2003–2007 Rabbit Semiconductor Inc.   •   All rights reserved.

Rabbit Semiconductor reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C are registered trademarks of Rabbit Semiconductor Inc.

Rabbit 3000 and RabbitCore are trademarks of Rabbit Semiconductor Inc.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means 
without the express written permission of Rabbit Semiconductor.

Permission is granted to make one or more copies as long as the copyright page contained therein is 
included. These copies of the manuals may not be let or sold for any reason without the express written 
permission of Rabbit Semiconductor.

The latest revision of this manual is available on the Rabbit Semiconductor Web site, 
www.rabbit.com, for free, unregistered download.
RabbitCore RCM3700

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/


TABLE OF CONTENTS

Chapter 1.  Introduction 1
1.1  RCM3700 Features ...............................................................................................................................1
1.2  Advantages of the RCM3700 ...............................................................................................................3
1.3  Development and Evaluation Tools......................................................................................................4

1.3.1  Development Kit ...........................................................................................................................4
1.3.2  Software ........................................................................................................................................5
1.3.3  Application Kits ............................................................................................................................5
1.3.4  Online Documentation ..................................................................................................................5

Chapter 2.  Getting Started 7
2.1  Install Dynamic C .................................................................................................................................7
2.2  Hardware Connections..........................................................................................................................8

2.2.1  Attach Module to Prototyping Board............................................................................................8
2.2.2  Connect Programming Cable ........................................................................................................9
2.2.3  Connect Power ............................................................................................................................10

2.2.3.1  Overseas Development Kits ............................................................................................... 10
2.3  Starting Dynamic C ............................................................................................................................11
2.4  Run a Sample Program .......................................................................................................................11

2.4.1  Troubleshooting ..........................................................................................................................11
2.5  Where Do I Go From Here? ...............................................................................................................12

2.5.1  Technical Support .......................................................................................................................12

Chapter 3.  Running Sample Programs 13
3.1  Introduction.........................................................................................................................................13
3.2  Sample Programs ................................................................................................................................15

3.2.1  Use of Serial Flash ......................................................................................................................17
3.2.2  Serial Communication.................................................................................................................17
3.2.3  A/D Converter Inputs..................................................................................................................20

Chapter 4.  Hardware Reference 23
4.1  RCM3700 Digital Inputs and Outputs ................................................................................................24

4.1.1  Memory I/O Interface .................................................................................................................28
4.1.2  Other Inputs and Outputs ............................................................................................................28

4.2  Serial Communication ........................................................................................................................29
4.2.1  Serial Ports ..................................................................................................................................29
4.2.2  Ethernet Port ...............................................................................................................................30
4.2.3  Serial Programming Port.............................................................................................................31

4.3  Serial Programming Cable..................................................................................................................32
4.3.1  Changing Between Program Mode and Run Mode ....................................................................32
4.3.2  Standalone Operation of the RCM3700......................................................................................33

4.4  Other Hardware...................................................................................................................................34
4.4.1  Clock Doubler .............................................................................................................................34
4.4.2  Spectrum Spreader ......................................................................................................................34
User’s Manual



4.5  Memory .............................................................................................................................................. 35
4.5.1  SRAM......................................................................................................................................... 35
4.5.2  Flash EPROM............................................................................................................................. 35
4.5.3  Serial Flash ................................................................................................................................. 35
4.5.4  Dynamic C BIOS Source Files................................................................................................... 35

Chapter 5.  Software Reference 37
5.1  More About Dynamic C..................................................................................................................... 37
5.2  Dynamic C Functions......................................................................................................................... 39

5.2.1  Board Initialization..................................................................................................................... 40
5.2.2  Analog Inputs ............................................................................................................................. 41
5.2.3  Digital I/O................................................................................................................................... 57
5.2.4  Serial Communication Drivers ................................................................................................... 58
5.2.5  Serial Flash ................................................................................................................................. 58
5.2.6  TCP/IP Drivers ........................................................................................................................... 58

5.3  Upgrading Dynamic C ....................................................................................................................... 59
5.3.1  Add-On Modules ........................................................................................................................ 59

5.3.1.1  Featured Application Kit ...................................................................................................  59

Chapter 6.  Using the TCP/IP Features 61
6.1  TCP/IP Connections ........................................................................................................................... 61
6.2  TCP/IP Primer on IP Addresses ......................................................................................................... 63

6.2.1  IP Addresses Explained.............................................................................................................. 65
6.2.2  How IP Addresses are Used ....................................................................................................... 66
6.2.3  Dynamically Assigned Internet Addresses................................................................................. 67

6.3  Placing Your Device on the Network ................................................................................................ 68
6.4  Running TCP/IP Sample Programs.................................................................................................... 69

6.4.1  How to Set IP Addresses in the Sample Programs..................................................................... 70
6.4.2  How to Set Up your Computer for Direct Connect .................................................................... 71

6.5  Run the PINGME.C Sample Program................................................................................................ 72
6.6  Running Additional Sample Programs With Direct Connect ............................................................ 72

6.6.1  RabbitWeb Sample Programs..................................................................................................... 73
6.6.2  Secure Sockets Layer (SSL) Sample Programs.......................................................................... 74
6.6.3  Dynamic C FAT File System, RabbitWeb, and SSL Modules .................................................. 74

6.7  Where Do I Go From Here? ............................................................................................................... 76

Appendix A.  RCM3700 Specifications 77
A.1  Electrical and Mechanical Characteristics ........................................................................................ 78

A.1.1  Headers ...................................................................................................................................... 81
A.2  Bus Loading ...................................................................................................................................... 82
A.3  Rabbit 3000 DC Characteristics ........................................................................................................ 85
A.4  I/O Buffer Sourcing and Sinking Limit............................................................................................. 86
A.5  Conformal Coating ............................................................................................................................ 87
A.6  Jumper Configurations ...................................................................................................................... 88

Appendix B.  Prototyping Board 89
B.1  RCM3700 Prototyping Board............................................................................................................ 90

B.1.1  Features...................................................................................................................................... 91
B.1.2  Mechanical Dimensions and Layout.......................................................................................... 93
B.1.3  Power Supply............................................................................................................................. 94
B.1.4  Using the RCM3700 Prototyping Board ................................................................................... 95

B.1.4.1  Adding Other Components ...............................................................................................  96
B.1.5  Analog Features ......................................................................................................................... 97

B.1.5.1  A/D Converter Inputs........................................................................................................  97
B.1.5.2  Thermistor Input ...............................................................................................................  99
B.1.5.3  Other A/D Converter Features ........................................................................................  100
B.1.5.4  A/D Converter Calibration..............................................................................................  101
RabbitCore RCM3700



B.1.6  Serial Communication..............................................................................................................102
B.1.6.1  RS-232 ............................................................................................................................. 103
B.1.6.2  RS-485 ............................................................................................................................. 104

B.1.7  Other Prototyping Board Modules ...........................................................................................106
B.1.8  Jumper Configurations .............................................................................................................107
B.1.9  Use of Rabbit 3000 Parallel Ports ............................................................................................109

B.2  RCM3720 Prototyping Board ..........................................................................................................111
B.2.1  Features ....................................................................................................................................112
B.2.2  Mechanical Dimensions and Layout ........................................................................................113
B.2.3  Power Supply ...........................................................................................................................114
B.2.4  Using the RCM3720 Prototyping Board ..................................................................................115

B.2.4.1  Prototyping Area.............................................................................................................. 117
B.2.5  Serial Communication..............................................................................................................118
B.2.6  Use of Rabbit 3000 Parallel Ports ............................................................................................120

Appendix C.  LCD/Keypad Module 123
C.1  Specifications ...................................................................................................................................123
C.2  Contrast Adjustments for All Boards ...............................................................................................125
C.3  Keypad Labeling ..............................................................................................................................126
C.4  Header Pinouts .................................................................................................................................127

C.4.1  I/O Address Assignments.........................................................................................................127
C.5  Install Connectors on Prototyping Board.........................................................................................128
C.6  Mounting LCD/Keypad Module on the Prototyping Board ............................................................129
C.7  Bezel-Mount Installation..................................................................................................................130

C.7.1  Connect the LCD/Keypad Module to Your Prototyping Board...............................................132
C.8  Sample Programs .............................................................................................................................133
C.9  LCD/Keypad Module Function Calls ..............................................................................................134

C.9.1  LCD/Keypad Module Initialization..........................................................................................134
C.9.2  LEDs.........................................................................................................................................134
C.9.3  LCD Display.............................................................................................................................135
C.9.4  Keypad......................................................................................................................................155

Appendix D.  Power Supply 159
D.1  Power Supplies.................................................................................................................................159

D.1.1  Battery Backup.........................................................................................................................160
D.1.2  Battery-Backup Circuit ............................................................................................................161
D.1.3  Reset Generator ........................................................................................................................161

Appendix E.  Secure Embedded Web Application Kit 163
E.1  Sample Programs..............................................................................................................................164
E.2  Module Documentation....................................................................................................................164

Index 165

Schematics 169
User’s Manual



RabbitCore RCM3700



1.  INTRODUCTION

The RCM3700 is a compact module that incorporates the latest
revision of the powerful Rabbit® 3000 microprocessor, flash
memory, onboard serial flash, static RAM, and digital I/O ports.

Throughout this manual, the term RCM3700 refers to the complete series of RCM3700 
RabbitCore modules unless other production models are referred to specifically.

The RCM3700 has a Rabbit 3000 microprocessor operating at 22.1 MHz, static RAM, 
flash memory, two clocks (main oscillator and real-time clock), and the circuitry necessary 
for reset and management of battery backup of the Rabbit 3000’s internal real-time clock 
and the static RAM. One 40-pin header brings out the Rabbit 3000 I/O bus lines, parallel 
ports, and serial ports.

The RCM3700 receives its +5 V power from the customer-supplied motherboard on 
which it is mounted. The RCM3700 can interface with all kinds of CMOS-compatible 
digital devices through the motherboard.

The Development Kit and the Ethernet Connection Kit have what you need to design your 
own microprocessor-based system: a complete Dynamic C software development system 
with optional modules and a Prototyping Board that acts as a motherboard to allow you to 
evaluate the RCM3700 and to prototype circuits that interface to the RCM3700 module.

1.1  RCM3700 Features
• Small size: 1.20" x 2.95" x 0.89"

(30 mm x 75 mm x 23 mm) 

• Microprocessor: latest revision of Rabbit 3000 running at 22.1 MHz supports Dynamic C 
Secure Sockets Layer (SSL) module for added security

• 33 parallel 5 V tolerant I/O lines: 31 configurable for I/O, 2 fixed outputs

• External reset I/O

• Alternate I/O bus can be configured for 8 data lines and 5 address lines (shared with 
parallel I/O lines), I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers 

• 512K flash memory and 512K SRAM (options for 256K flash memory and 128K SRAM)
User’s Manual 1



• 1 Mbyte serial flash memory, which is required to run the optional Dynamic C FAT file 
system

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J1

• 10-bit free-running PWM counter and four pulse-width registers

• Two-channel Input Capture can be used to time input signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder 
modules

• Four available 3.3 V CMOS-compatible serial ports: maximum asynchronous baud rate 
of 2.76 Mbps. Three ports are configurable as a clocked serial port (SPI), and one port 
is configurable as an HDLC serial port. Shared connections to the Rabbit microproces-
sor make a second HDLC serial port available at the expense of two of the SPI config-
urable ports, giving you two HDLC ports and one asynchronous/SPI serial port.

• Supports 1.15 Mbps IrDA transceiver

There are three RCM3700 production models. Table 1 below summarizes their main 
features.

The RCM3700 is programmed over a standard PC serial port through a programming cable 
supplied with the Development Kit or the Ethernet Connection Kit, and can also be pro-
gramed through a USB port with an RS-232/USB converter or over an Ethernet with the 
RabbitLink (both available from Rabbit Semiconductor).

Appendix A provides detailed specifications for the RCM3700.

Table 1.  RCM3700 Features

Feature RCM3700 RCM3710 RCM3720

Microprocessor Rabbit 3000® running at 22.1 MHz

Flash Memory 512K 256K 512K

SRAM 512K 128K 256K

Serial Flash Memory 1 Mbyte

Serial Ports

4 shared high-speed, 3.3 V CMOS-compatible ports:
all 4 are configurable as asynchronous serial ports;
3 are configurable as a clocked serial port (SPI) and 1 is configurable as 
an HDLC serial port;
option for second HDLC serial port at the expense of 2 clocked serial 
ports (SPI)
2 RabbitCore RCM3700



1.2  Advantages of the RCM3700
• Fast time to market using a fully engineered, “ready-to-run/ready-to-program” micro-

processor core.

• Competitive pricing when compared with the alternative of purchasing and assembling 
individual components.

• Easy C-language program development and debugging

• Rabbit Field Utility to download compiled Dynamic C .bin files, and cloning board 
options for rapid production loading of programs.

• Generous memory size allows large programs with tens of thousands of lines of code, 
and substantial data storage.

• Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.

• Ideal for network-enabling security and access systems, home automation, HVAC 
systems, and industrial controls
User’s Manual 3



1.3  Development and Evaluation Tools
1.3.1  Development Kit

The Development Kit contains the hardware and software needed to use the RCM3700.

• RCM3700 module.

• RCM3700 Prototyping Board.

• AC adapter, 12 V DC, 1 A (included only with Development Kits sold for the North 
American market). A header plug leading to bare leads is provided to allow overseas 
users to connect their own power supply with a DC output of 7.5–30 V.)

• Programming cable with 10-pin header and DE9 connections, and integrated level-
matching circuitry.

• Cable kits to access RS-485 and analog input connectors on Prototyping Board.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Figure 1.  RCM3700 Development Kit

����

����

�����������
	�
��

��������������
������������ �����������������

Rabbit and Dynamic C are registered trademarks of Rabbit Semiconductor Inc.

RabbitCore RCM3700
Development Kit Contents
The RCM3700 Development Kit contains the following items:

• RCM3700 module.

• Prototyping Board.

• AC adapter, 12 V DC, 500 mA (included only with Development Kits sold for the North American 
market). A header plug leading to bare leads is provided to allow overseas users to connect their own 
power supply with a DC output of 7.5–30 V.)

• Programming cable with 10-pin header and DB9 connections, and integrated level-matching circuitry.

• Cable kits to access RS-485 and analog input connectors on Prototyping Board.

• Dynamic C CD-ROM, with complete product documentation on disk.

• Getting Started instructions.

• Accessory parts for use on the Prototyping Board.

• Rabbit 3000 Processor Easy Reference poster.

• Registration card.

Installing Dynamic C®

Insert the CD from the Development Kit in your PC’s CD-ROM drive. If the instal-
lation does not auto-start, run the setup.exe program in the root directory of the 
Dynamic C CD. Install any Dynamic C modules after you install Dynamic C.

�������������������
�����������������

�	��������
�	
�����������

�����
����

�������	�
�������

�� ��
��

��
 �
�!

 �
�"

 �
�#

 �
�$

�	
�

�%
& 
�

�'
�

 �
�(

 �
�)

 �
�* �	
�

�	
� �" �( �( �) �* �+ �	
�

�) �( �! �" �# �$ �	
�

�%
& 
�

�'
�

 �
�(

 �
�)

 �
�* �	
�

�	
� �" �! �( �) �* �+

 "

'(

'"

��(
�(
�"
�)
�#

�,

�,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((
1)

'#

'+ '. '(
!

�()

'((

1#

'* '$

'-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

��
#��

�"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�	
� 	'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)�

�	
�

�*
�

�*
�

�	
�

�)
6)�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

��
	

�4
�

�4
�

�4
�

��
	

�'73�7�3��'&��

�*
�

�%
��

��
*

���
��

��
$3
�4
�

��
!

��
#

��
+

�'
"3
�4
'

�'
!3
�4
�

�2
$

�2
#

�%
*

�%
)

�%
!

�2
(

��
(

��
)

��
*

��
+

/*

�	
�

�($ �	
�

��
�� ��
#

���
5� ��
(

��
*

�'
)��

�) �2
+

�2
*

�%
+

�%
#

�%
"

�2
!

��
!

��
"

��
#

��
$

��
+

�4
�

�'
(�

��
"

'""

'"$
�"( �(.

'"
!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�#
)

'"-/+
�8��7�����

�)
+

/.

��
�2


�
�	

�#
#

��
��

�
�� ��	 !$ !* !# !) !" !( !! ��	


�
�	

�)
.

')
!

')
(

')
"

')
)

')
#

�)-��#! �#(��#"

�#
.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	' 	'	' 	'	' 	'

�� ��
��
��

 �
�!

 �
�"

 �
�#

 �
�$

�	
�

�) �( �! �" �# �$

�'
7)

$�)
+4
4��

��
���

��
��

��
9�

�	
��
%�

��
�

�����
4 RabbitCore RCM3700



1.3.2  Software

The RCM3700 is programmed using version 8.11 or later of Dynamic C.

Rabbit Semiconductor also offers for sale other add-on Dynamic C modules including the 
popular µC/OS-II real-time operating system, as well as point-to-point protocol (PPP), 
Advanced Encryption Standard (AES), and other select libraries. In addition to the Web-
based technical support included at no extra charge, a one-year telephone-based technical 
support module is also available for purchase. Visit our Web site at www.rabbit.com or 
contact your Rabbit Semiconductor sales representative or authorized distributor for fur-
ther information.

1.3.3  Application Kits

Rabbit Semiconductor also has application kits featuring the RCM3700 to provide the 
exact software and other tools that will enable to tailor your RCM3700 for specific appli-
cations.

• Secure Embedded Web Application Kit [Part No. 101-0897 (North American markets) 
and Part No. 101-0898 (overseas markets)]—comes with three CD-ROMs that have the 
Dynamic C RabbitWeb, FAT File System, and Secure Sockets Layer (SSL) modules, 
and includes Dynamic C 8.51 or a later version and an RCM3700. This enhanced soft-
ware bundle facilitates the rapid development of secure Web browser interfaces for 
embedded system control. Appendix E provides additional information about the 
Secure Embedded Web Application Kit.

• Ethernet Connection Kit [Part No. 101-0963 (North American markets) and Part No. 
101-0964 (overseas markets)]—comes with one CD-ROM that includes Dynamic C 
9.01 or a later version, an RCM3720 module, and an RCM3720 Prototyping Board. 
This kit is intended to demonstrate and help you develop Ethernet-based applications.

Visit our Web site at www.rabbit.com or contact your Rabbit Semiconductor sales repre-
sentative or authorized distributor for further information.

1.3.4  Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the 
menu. If the icon is missing, use your browser to find and load default.htm in the docs 
folder, found in the Dynamic C installation folder.

Each Dynamic C module has complete documentation available with the online documen-
tation described above.

The latest versions of all documents are always available for free, unregistered download 
from our Web sites as well.
User’s Manual 5

http://www.rabbit.com/products/dc/
http://www.rabbit.com/products/dc/


6 RabbitCore RCM3700



2.  GETTING STARTED

This chapter describes the RCM3700 hardware in more detail, and
explains how to set up and use the accompanying Prototyping Board.

NOTE: It is assumed that you have the RCM3700 Development Kit. If you purchased an 
RCM3700 module by itself, you will have to adapt the information in this chapter and 
elsewhere to your test and development setup.

2.1  Install Dynamic C
To develop and debug programs for the RCM3700 (and for all other Rabbit Semiconductor 
hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C version 8.11 (or a later version), do so now by 
inserting the Dynamic C CD from the RCM3700 Development Kit in your PC’s CD-ROM 
drive. If autorun is enabled, the CD installation will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows 
Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder 
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the 
process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system. 
The installation allows you to choose the COM port that will be used. The default selec-
tion is COM1. You may select any available port for Dynamic C’s use. If you are not cer-
tain which port is available, select COM1. This selection can be changed later within 
Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such 
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop. 
One icon is for Dynamic C, one opens the documentation menu, and the third is for the 
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased any of the optional Dynamic C modules, install them after installing 
Dynamic C. The modules may be installed in any order. You must install the modules in 
the same directory where Dynamic C was installed.
User’s Manual 7



2.2  Hardware Connections
There are three steps to connecting the Prototyping Board for use with Dynamic C and the 
sample programs:

1. Attach the RCM3700 module to the Prototyping Board.
2. Connect the programming cable between the RCM3700 and the COM port on the 

workstation PC.
3. Connect the power supply to the Prototyping Board.

The connections are shown for the RCM3700 Prototyping Board, and are similar for the 
RCM3720 Prototyping Board.

2.2.1  Attach Module to Prototyping Board

Turn the RCM3700 module so that the Ethernet jack is on the left as shown in Figure 2 
below. Insert the module’s J1 header into the TCM_SMT_SOCKET socket on the Proto-
typing Board. The shaded corner notch at the bottom right corner of the RCM3700 module 
should face the same direction as the corresponding notch below it on the Prototyping 
Board.

Figure 2.  Install the RCM3700 Series on the Prototyping Board

NOTE: It is important that you line up the pins on header J1 of the RCM3700 module 
exactly with the corresponding pins of the TCM_SMT_SOCKET socket on the Proto-
typing Board. The header pins may become bent or damaged if the pin alignment is off-
set, and the module will not work. Permanent electrical damage to the module may also 
result if a misaligned module is powered up.

Press the module’s pins firmly into the Prototyping Board headers.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3

�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3

�
4
'

�
'
!3

�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�
"#

�
"

'
(.

'
)#

��(��" �
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1('"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�((')+

�#�*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+'#-

 "

 (

'(#

'("'""

1
.'
")

9)'*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

��������������

������������
��������	� !""
8 RabbitCore RCM3700



2.2.2  Connect Programming Cable

The programming cable connects the RCM3700 to the PC running Dynamic C to down-
load programs and to monitor the RCM3700 module during debugging.

Connect the 10-pin connector of the programming cable labeled PROG to header J2 on 
the RCM3700 as shown in Figure 3. Be sure to orient the marked (usually red) edge of the 
cable towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a 
normal serial connection.)

Figure 3.  Connect Programming Cable and Power Supply

NOTE: Be sure to use the programming cable (part number 101-0542) supplied with this 
Development Kit—the programming cable has blue shrink wrap around the RS-232 con-
verter section located in the middle of the cable. The simplified programming cable and 
adapter board that are supplied with the Ethernet Connection Kit may also be used as 
shown in the inset diagram above. Programming cables from other Rabbit Semiconduc-
tor kits are not designed to work with RCM3700 modules.

Connect the other end of the programming cable to a COM port on your PC.

NOTE: Some PCs now come equipped only with a USB port. It may be possible to use 
an RS-232/USB converter (Part No. 540-0070) with the programming cable supplied 
with the RCM3600 Development Kit. Note that not all RS-232/USB converters work 
with Dynamic C.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

 #���
��$������������

�	��������

�������$����

%��������	�������������
�����������

	�
��

�
"#

�
"

'
(.

'
)#

��(��" �
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1('"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�((')+

�#�*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+'#-

 "

 (

'(#

'("'""

1
.'
")

9)'*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

'
�
��;
�;<�

�

�
'
��

�
�
�=

�
�

%�>�
������?��=

�
�
�
�

�
��
�

��������
�����������

	�
��

�
�
�
�

/"

/"

 ����>=��
�
��;��;<�
?���;
�
User’s Manual 9



2.2.3  Connect Power

When all other connections have been made, you can connect power to the Prototyping 
Board. Connect the wall transformer to 3-pin header J4 on the Prototyping Board as 
shown in Figure 3. The connector may be attached either way as long as it is not offset to 
one side.

Plug in the wall transformer. The LED above the RESET button on the Prototyping Board 
should light up. The RCM3700 and the Prototyping Board are now ready to be used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset 
without disconnecting power.

2.2.3.1  Overseas Development Kits

Development kits sold outside North America include a header connector that may be 
connected to 3-pin header J4 on the Prototyping Board. The connector may be attached 
either way as long as it is not offset to one side. The red and black wires from the connec-
tor can then be connected to the positive and negative connections on your power supply. 
The power supply should deliver 7.5 V–30 V DC at 500 mA.
10 RabbitCore RCM3700



2.3  Starting Dynamic C
Once the RCM3700 is connected as described in the preceding pages, start Dynamic C by 
double-clicking on the Dynamic C icon or by double-clicking on dcrabXXXX.exe in 
the Dynamic C root directory, where XXXX are version-specific characters. Dynamic C 
uses the serial COM port on your PC that you specified during installation.

If you are using a USB port to connect your computer to the RCM3700 module, choose 
Options > Project Options and select “Use USB to Serial Converter.”

2.4  Run a Sample Program
Use the File menu to open the sample program PONG.C, which is in the Dynamic C 
SAMPLES folder. Press function key F9 to compile and run the program. The STDIO 
window will open on your PC and will display a small square bouncing around in a box.

2.4.1  Troubleshooting

If a program compiles and loads, but then loses target communication before you can 
begin debugging, it is possible that your PC cannot handle the default debugging baud 
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options > 
Communications menu. Choose a lower debug baud rate.

If there are any other problems:

• Check that the RCM3700 is powered correctly — the power LED above the RESET 
button on the Prototyping Board should be lit.

• Check to make sure you are using the PROG connector, not the DIAG connector, on the 
programming cable.

• Check both ends of the programming cable to ensure that they are firmly plugged into 
the PC and the programming port on the RCM3700.

• Ensure that the RCM3700 module is firmly and correctly installed in its connectors on 
the Prototyping Board.

• Select a different COM port within Dynamic C. From the Options menu, select 
Project Options, then select Communications. Select another COM port from the list, 
then click OK. Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C 
still reports it is unable to locate the target system, repeat the above steps until you locate 
the active COM port.
User’s Manual 11



2.5  Where Do I Go From Here?
If the sample program ran fine, you are now ready to go on to other sample programs and to 
develop your own applications. The source code for the sample programs is provided to allow 
you to modify them for your own use. The RCM3700 User’s Manual also provides com-
plete hardware reference information and describes the software function calls for the 
RCM3700, the Prototyping Board, and the optional LCD/keypad module.

For advanced development topics, refer to the Dynamic C User’s Manual and the 
Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1  Technical Support

NOTE: If you purchased your RCM3700 through a distributor or through a Rabbit Semi-
conductor partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Semiconductor Technical Bulletin Board at 
www.rabbit.com/support/bb/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.
12 RabbitCore RCM3700

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml


3.  RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM3700 (and for all
other Rabbit Semiconductor hardware), you must install and use
Dynamic C.

3.1  Introduction
To help familiarize you with the RCM3700 modules, Dynamic C includes several sample 
programs. Loading, executing and studying these programs will give you a solid hands-on 
overview of the RCM3700’s capabilities, as well as a quick start with Dynamic C as an 
application development tool.

NOTE: The sample programs assume that you have at least an elementary grasp of the C 
programming language. If you do not, see the introductory pages of the Dynamic C 
User’s Manual for a suggested reading list.

In order to run the sample programs discussed in this chapter and elsewhere in this manual,

1. Your RCM3700 must be plugged in to the Prototyping Board as described in Chapter 2, 
“Getting Started.”

2. Dynamic C must be installed and running on your PC.

3. The programming cable must connect the programming header (J2) on the RCM3700 
to your PC.

4. Power must be applied to the RCM3700 through the Prototyping Board.

Refer to Chapter 2, “Getting Started,” if you need further information on these steps.

To run a sample program, open it with the File menu, then compile and run it by pressing 
F9. The RCM3700 must be connected to a PC using the programming cable.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.
Getting Started 13



The default I/O configuration in the sample programs is based on the RabbitCore module 
detected during compile time:

• Any RCM3700 RabbitCore module (except the RCM3720) will have its I/O ports con-
figured for an RCM3700 Prototyping Board.

• An RCM3720 RabbitCore module will have its I/O ports configured for an RCM3720 
Prototyping Board.

You may override these default settings to run an RCM3720 RabbitCore module on the 
RCM3700 Prototyping Board or to run another RCM3700 RabbitCore module on the 
RCM3720 Prototyping Board by adding the following macro to the sample program you 
will be running.

• To run an RCM3720 RabbitCore module on an RCM3700 Prototyping Board, add the 
following macro at the top of the sample program you will be running.

#define RCM3700_PROTOBOARD

Sample programs that are specifically designed for the RCM3700 Prototyping Board 
already have this macro included.

• To run an RCM3700 RabbitCore module (other than the RCM3720) on an RCM3720 
Prototyping Board, add the following macro at the top of the sample program you will 
be running.

#define RCM3720_PROTOBOARD
14 RabbitCore RCM3700



3.2  Sample Programs
Of the many sample programs included with Dynamic C, several are specific to the 
RCM3700. Sample programs illustrating the general operation of the RCM3700, serial 
communication, and the A/D converter on the Prototyping Board are provided in the 
SAMPLES\RCM3700 and the SAMPLES\RCM3720 folders as shown in the table below. The 
sample programs use the features available on the two Prototyping Boards.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. Note that the 
RCM3700 must be installed on the Prototyping Board when using these sample programs.

TCP/IP sample programs are described in Chapter 6, “Using the TCP/IP Features.” Sample 
programs for the optional LCD/keypad module that is used on the RCM3700 Prototyping 
Board are described in Appendix C.

Additional sample programs are available online at www.rabbit.com/support/down-
loads/downloads_prod.shtml.

• DIO.c—Demonstrates the digital I/O capabilities of the A/D converter on the Proto-
typing Board by configuring two lines to outputs and two lines as inputs on Prototyping 
Board header JP4.

If you are using the RCM3700 Prototyping Board, install a 2 x 2 header at JP4 and con-
nect pins 1–2 and pins 3–4 on header JP4 before running this sample program.

• FLASHLED.c—Demonstrates assembly-language program by flashing LEDs DS1 and 
DS2 on the Prototyping Board at different rates.

• TOGGLESWITCH.c—Uses costatements to detect switches using debouncing. The cor-
responding LEDs (DS1 and DS2) will turn on or off.

Feature RCM3700 Prototyping 
Board

RCM3720 Prototyping 
Board

Sample Program Folder SAMPLES\RCM3700 SAMPLES\RCM3720

Digital I/O × ×

IrDA Transceivers ×

Serial Flash × ×

Serial Communication × ×

TCP/IP × ×

A/D Converter ×

LCD/Keypad Module ×

Dynamic C FAT File System, 
RabbitWeb,

SSL Modules
× ×
Getting Started 15

http://www.rabbit.com/support/downloads/downloads_prod.shtml
http://www.rabbit.com/support/downloads/downloads_prod.shtml


• CONTROLLED.c—Demonstrates use of the digital inputs by having you turn the LEDs 
on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED.C, the following display will appear in the 
Dynamic C STDIO window.

Press “1” or “2” on your keyboard to select LED DS1 or DS2 on the Prototyping 
Board. Then follow the prompt in the Dynamic C STDIO window to turn the LED on or 
off.

• IR_DEMO.c—Demonstrates sending Modbus ASCII packets between two RCM3700 
Prototyping Board assemblies with IrDA transceivers via the IrDA transceivers. Note 
that this sample program will only work with the RCM3700 Prototyping Board.

First, compile and run this program on one Prototyping Board assembly, then remove 
the programming cable and press the RESET button on the Prototyping Board so that 
the first RabbitCore module is operating in the Run mode. Then connect the program-
ming cable to the second Prototyping Board assembly with the RCM3700 and compile 
and run the same sample program. With the programming cable still connected to the 
second Prototyping Board assembly, press switch S1 on the second Prototyping Board 
to transmit a packet. Once the first Prototyping Board assembly receives a test packet, it 
will send back a response packet that will be displayed in the Dynamic C STDIO win-
dow. The test packets and response packets have different codes.

Once you have loaded and executed these five programs and have an understanding of 
how Dynamic C and the RCM3700 modules interact, you can move on and try the other 
sample programs, or begin building your own.
16 RabbitCore RCM3700



3.2.1  Use of Serial Flash

The following sample programs can be found in the SAMPLES\RCM3700\SerialFlash 
and the SAMPLES\RCM3720\SerialFlash folders.

• SERIAL_FLASHLOG.C—This program runs a simple Web server and stores a log of 
hits on the home page of the serial flash “server.” This log can be viewed and cleared 
from a browser at http://10.10.6.100/. You may need to first “configure” your PC for a 
“10Base-T Half-Duplex” or an “Auto-Negotiation” connection from the “Advanced” 
tab, which is accessed from the control panel (Start > Settings > Control Panel) by 
choosing Network Connections.

• SFLASH_INSPECT.C—This program is a handy utility for inspecting the contents of a 
serialflash chip. When the sample program starts running, it attempts to initialize a 
serial flash chip on Serial Port B. Once a serial flash chip is found, the user can perform 
two different commands to either print out the contents of a specified page or clear (set 
to zero) all the bytes in a specified page.

3.2.2  Serial Communication
The following sample programs can be found in the SAMPLES\RCM3700\SERIAL and the 
SAMPLES\RCM3720\SERIAL folders.

NOTE: PE5 is set up to enable/disable the RS-232 chip on the RCM3700 Prototyping 
Board. This pin will also be toggled when you run RS-232 sample programs on an 
RCM3700 Prototyping Board. If you plan to use this pin for something else while you 
are running any of the RS-232 sample programs, comment out the following line.

   BitWrPortI(PEDR, &PEDRShadow, 0, 5);//set low to enable rs232 device

• FLOWCONTROL.C—This program demonstrates hardware flow control by configuring 
Serial Port C for CTS/RTS with serial data coming from Serial Port D. The serial data 
received are displayed in the STDIO window.

To set up the Prototyping Board, you will need to tie TxC and RxC 
together on the RS-232 header at J2, and you will also tie TxD and 
RxD together using the jumpers supplied in the Development Kit as 
shown in the diagram.

A repeating triangular pattern should print out in the STDIO window. 
The program will periodically switch flow control on or off to demonstrate the effect of 
no flow control.

Refer to the function description for serDflowcontrolOn() in the Dynamic C 
Function Reference Manual for a general description on how to set up flow-control 
lines.

&'
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	
Getting Started 17



• PARITY.C—This program demonstrates the use of parity modes by 
repeatedly sending byte values 0–127 from Serial Port D to Serial Port 
C. The program will switch between generating parity or not on Serial 
Port D. Serial Port C will always be checking parity, so parity errors 
should occur during every other sequence.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the 
RS-232 header at J2 using the 0.1" jumpers supplied in the Development Kit as shown 
in the diagram.

The Dynamic C STDIO window will display the error sequence.

• SIMPLE3WIRE.C—This program demonstrates basic RS-232 serial 
communication. Lower case characters are sent by TxC, and are 
received by RxD. The characters are converted to upper case and are 
sent out by TxD, are received by RxC, and are displayed in the 
Dynamic C STDIO window.

To set up the Prototyping Board, you will need to tie TxD and RxC together on the 
RS-232 header at J2, and you will also tie RxD and TxC together using the 0.1" jump-
ers supplied in the Development Kit as shown in the diagram.

• SIMPLE5WIRE.C—This program demonstrates 5-wire RS-232 serial communication 
with flow control on Serial Port C and data flow on Serial Port D.

To set up the Prototyping Board, you will need to tie TxD and RxD 
together on the RS-232 header at J2, and you will also tie TxC and 
RxC together using the 0.1" jumpers supplied in the Development Kit 
as shown in the diagram.

Once you have compiled and run this program, you can test flow con-
trol by disconnecting TxC from RxC while the program is running. Characters will no 
longer appear in the STDIO window, and will display again once TxC is connected 
back to RxC.

• SWITCHCHAR.C—This program transmits and then receives an ASCII string on Serial 
Ports C and E. It also displays the serial data received from both ports in the STDIO 
window.

Before running this sample program, check to make sure that Serial 
Port E is set up as an RS-232 serial port—pins 1–3 and pins 2–4 on 
header JP2 on the Prototyping Board must be jumpered together using 
the 2 mm jumpers supplied in the Development Kit. Then connect TxC 
to RxE and connect RxC to TxE on the RS-232 header at J2 using the 
0.1" jumpers supplied in the Development Kit as shown in the diagram.

&'
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

&'
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

&'
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

&'
�����������

�
�	

�
4
�

�
4
�

�
4
�

�
�	

&�'
18 RabbitCore RCM3700



NOTE: The following two sample programs illustrating RS-485 serial communication 
will only work with the RCM3700 Prototyping Board.

• SIMPLE485MASTER.C—This program demonstrates a simple RS-485 transmission of 
lower case letters to a slave RCM3700. The slave will send back converted upper case 
letters back to the master RCM3700 and display them in the STDIO window. Use 
SIMPLE485SLAVE.C to program the slave RCM3700, and check to make sure that 
Serial Port E is set up as an RS-485 serial port—pins 3–5 and pins 4–6 on header JP2 
must be jumpered together using the 2 mm jumpers supplied in the Development Kit.

• SIMPLE485SLAVE.C—This program demonstrates a simple RS-485 
transmission of lower case letters to a master RCM3700. The slave 
will send back converted upper case letters back to the master 
RCM3700 and display them in the STDIO window. Use 
SIMPLE485MASTER.C to program the master RCM3700, and check to make sure that 
Serial Port E is set up as an RS-485 serial port—pins 3–5 and pins 4–6 on header JP2 
must be jumpered together using the 2 mm jumpers supplied in the Development Kit.

&�'
Getting Started 19



3.2.3  A/D Converter Inputs

The following sample programs are found in the SAMPLES\RCM3700\ADC folder.

• AD_CALDIFF_CH.C—Demonstrates how to recalibrate one differential analog input 
channel using two known voltages to generate the calibration constants for that channel. 
Constants will be rewritten into user block data area.

Before running this program, make sure that pins 1–3 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• AD_CALMA_CH.C—Demonstrates how to recalibrate an A/D input channel being used to 
convert analog current measurements to generate the calibration constants for that channel.

Before running this program, make sure that pins 3–5 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. Connect pins 1–2, 3–4, 5–6, 7–8 on header JP8.

• AD_CALSE_ALL.C—Demonstrates how to recalibrate all single-ended analog input 
channels for one gain, using two known voltages to generate the calibration constants 
for each channel. Constants will be rewritten into the user block data area.

Before running this program, make sure that pins 3–5 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• AD_CALSE_CHAN.C—Demonstrates how to recalibrate one single-ended analog input 
channel with one gain using two known voltages to generate the calibration constants 
for that channel. Constants will be rewritten into user block data area.

Before running this program, make sure that pins 3–5 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

NOTE: The above sample programs will overwrite any existing calibration constants.

• AD_RDDIFF_CH.C—Demonstrates how to read an A/D input channel being used for a 
differential input using previously defined calibration constants.

Before running this program, make sure that pins 1–3 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• AD_RDMA_CH.C—Demonstrates how to read an A/D input channel being used to con-
vert analog current measurements using previously defined calibration constants for 
that channel.

Before running this program, make sure that pins 3–5 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. Connect pins 1–2, 3–4, 5–6, 7–8 on header JP8.

• AD_RDSE_ALL.C—Demonstrates how to read all single-ended A/D input channels 
using previously defined calibration constants.

Before running this program, make sure that pins 3–5 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.
20 RabbitCore RCM3700



• AD_SAMPLE.C—Demonstrates how to use a low-level driver on single-ended inputs. 
The program will continuously display the voltage (average of 10 samples) that is 
present on the A/D channels.

Before running this program, make sure that pins 3–5 are connected on headers JP5, 
JP6, and JP7 on the Prototyping Board. No pins are connected on header JP8.

• ANAINCONFIG.C—Demonstrates how to use the Register Mode method to read single-
ended analog input values for display as voltages. The sample program uses the func-
tion call anaInConfig() and the ADS7870 CONVERT line to accomplish this task.

Before running this program, make sure that pins 3–5 are connected on headers JP5, JP6, 
and JP7 on the Prototyping Board. No pins are connected on header JP8. Also connect 
PE4 on header J3 on the Prototyping Board to the CNVRT terminal on header J8.

If you use this sample program as a template for your own program, be aware that PE4 
is also used for the IrDA FIR_SEL on the Prototyping Board. You will need to use 
another parallel port line for the analog input if you are also using the IrDA transceiver. 

• THERMISTOR.C—Demonstrates how to use analog input THERM_IN7 to calculate 
temperature for display to the STDIO window. This sample program assumes that the 
thermistor is the one included in the Development Kit whose values for beta, series 
resistance, and resistance at standard temperature are given in the part specification.

Before running this program, install the thermistor into the AIN7 and AGND holes at 
location J7 on the Prototyping Board.

Before running the next two sample programs, DNLOADCALIB.C or UPLOADCALIB.C, 
connect your PC serial COM port to header J2 on the Prototyping Board as follows.

• Tx to RxE

• Rx to TxE

• GND to GND

Then connect pins 1–3 and 2–4 on header JP2 on the Prototyping Board.

You will need to run a serial utility such as Tera Term on your PC. You may download 
Tera Term from hp.vector.co.jp/authors/VA002416/teraterm.html. Once Tera Term is run-
ning, configure the serial parameters as follows.

• Baud rate 19200, 8 bits, no parity, and 1 stop bit.

• Enable the "Local Echo" option.

• Set the line feed options to Receive = CR and Transmit = CR + LF.

Now press F9 to compile and run this program. Verify that the message "Waiting,       
Please Send Data file" is being display in Tera Term display window before proceeding. 
From within Tera Term, select File > Send File > Path and filename, then select the 
OPEN option within the dialog box. Once the data file has been downloaded, it will indi-
cate whether the calibration data were written successfully.
Getting Started 21

http://hp.vector.co.jp/authors/VA002416/teraterm.html


• DNLOADCALIB.C—Demonstrates how to retrieve analog calibration data to rewrite it 
back to simulated EEPROM in flash with using a serial utility such as Tera Term.

• UPLOADCALIB.C—Demonstrates how to read calibrations constants from the user 
block in flash memory and then transmitting the file using a serial port and a PC serial 
utility such as Tera Term. Use DNLOADCALIB.C to download the calibration constants 
created by this program.
22 RabbitCore RCM3700



4.  HARDWARE REFERENCE

Chapter 4 describes the hardware components and principal hardware
subsystems of the RCM3700. Appendix A, “RCM3700 Specifica-
tions,” provides complete physical and electrical specifications.

Figure 4 shows the Rabbit-based subsystems designed into the RCM3700.

Figure 4.  RCM3700 Subsystems

�	
�

�����
���

�����
���

��

��	���������� 	�������#��������
�(������� �)�
������

	�*�#��+����������

	�������	����������

����� ���!!"#���$��#

%��&�����#�!�$'��(���%

�"�$�!����)���*��
�)) ���$��#�

+�$$��,�+���")
����"�$

-�&� 
��#&��$��

�$'��#�$

.��/��!
0 ��'

����� 
0 ��'

�����,�-
 """
User’s Manual 23



4.1  RCM3700 Digital Inputs and Outputs
Figure 5 shows the RCM3700 pinouts for header J1.

Figure 5.  RCM3700 Pinouts

Header J1 is a standard 2 x 20 IDC header with a nominal 0.1" pitch.

.���/ ������	
�������������������
�����������������������������

��$
��#
��"
��!
�2!
�%"
�%#
�%+
�2*
�2+

�'(���"
�')���)

��*
��(
��+

���5�
��#
����
�	�
�	�

��+
��*
��)
��(
�2(
�%!
�%)
�%*
�2#
�2$
�'!
�'"
��+
��#
��!
��$
�����
��*
�%��
�*��

1�
24 RabbitCore RCM3700



Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the RCM3700 modules.

Figure 6.  Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3700 are configurable, and 
so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000 factory defaults 
and the alternate configurations.

.��$�
 .��$�+ .��$��
2��$'��#�$�.��$3

.��$��

��!0��+ �%!@��%+@
�%"0�%*

��!0��(@
��#0��*@
��+

��#0��*

����@
���5�

4�$�'%�/
�����!���

� ������"( ��
� �&��.��$

	�� ���!��� ���

	
� +���")�+�$$��,
�"))��$ 0 ��'

.��$��
2����� �.��$����5��3

.��/��!!�#/
.��$

2����� �.��$�
3

�$'��#�$
.��$#�����������<����

�'$@�����1�
�%(@��'+@�������@
�7���!@��7���(

�'!@��'"

�'(@��')

.��$�6
2����� �.��$����5�03

.��$�0 �2#0�2+

����7��8�
����
�����

��"0��)
��$0��+

�����,�-
 """
User’s Manual 25



Table 2.  RCM3700 Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes

H
ea

de
r J

1

1–8 PA[7:0] Parallel I/O

External data bus
(ID0–ID7)

Slave port data bus
(SD0–SD7)

External Data Bus

9 PF1 Input/Output
QD1A
CLKC

10 PF0 Input/Output
QD1B
CLKD

11 PB0 Input/Output CLKB

12 PB2 Input/Output
IA0
/SWR

External Address 0
Slave port write

13 PB3 Input/Output
IA1
/SRD

External Address 1
Slave port read

14 PB4 Input/Output
IA2
SA0

External Address 2
Slave Port Address 0

15 PB5 Input/Output
IA3
SA1

External Address 3
Slave Port Address 1

16 PB7 Input/Output
IA5
/SLAVEATTN

External Address 5
Slave Port Attention

17 PF4 Input/Output
AQD1B
PWM0

18 PF5 Input/Output
AQD1A
PWM1

19 PF6 Input/Output
AQD2B
PWM2

20 PF7 Input/Output
AQD2A
PWM3

21 PC0 Output TXD Serial Port D

22 PC1/PG2 Input/Output RXD/TXF Serial Port D
Serial Port F

23 PC2 Output TXC Serial Port C

24 PC3/PG3 Input/Output RXC/RXF Serial Port C
Serial Port F

25 PE7 Input/Output
I7  
/SCS

I/O Strobe 7
Slave Port Chip Select
26 RabbitCore RCM3700



H
ea

de
r J

1
26 PE5 Input/Output

I5 
INT1B 

I/O Strobe 5
Interrupt 1B

27 PE4 Input/Output
I4 
INT0B 

I/O Strobe 4
Interrupt 0B

28 PE1 Input/Output
I1
INT1A 

I/O Strobe 1
Interrupt 1A

29 PE0 Input/Output
I0 
INT0A 

I/O Strobe 0
Interrupt 0A

30 PG7 Input/Output RXE
Serial Port E

31 PG6 Input/Output TXE

32 /IOWR Output  External write strobe

33 /IORD Input External read strobe

34 PD4 Input/Output ATXB
Alternate Serial Port B

35 PD5 Input/Output ARXB

36 /RES Reset output Reset input Reset output from Reset 
Generator

37 VBAT

38 GND

39 +5 V

40 GND

Table 2.  RCM3700 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
User’s Manual 27



4.1.1  Memory I/O Interface

The Rabbit 3000 address lines (A0–A18) and all the data lines (D0–D7) are routed inter-
nally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read 
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the 
main data bus. Parallel Port B pins PB2–PB5 and PB7 can also be used as an auxiliary 
address bus.

When using the auxiliary I/O bus for either Ethernet or the LCD/keypad module on the 
Prototyping Board, or for any other reason, you must add the following line at the begin-
ning of your program.

#define PORTA_AUX_IO    // required to enable auxiliary I/O bus

4.1.2  Other Inputs and Outputs

/RES is an output from the reset circuitry that can be used to reset other peripheral devices. 
This pin can also be used to reset the microprocessor.
28 RabbitCore RCM3700



4.2  Serial Communication
The RCM3700 board does not have any serial transceivers directly on the board. How-
ever, a serial interface may be incorporated on the board the RCM3700 is mounted on. For 
example, the Prototyping Board has RS-232, RS-485 and IrDA transceiver chips. 

4.2.1  Serial Ports

There are five serial ports designated as Serial Ports A, C, D, E, and F. All five serial ports 
can operate in an asynchronous mode up to the baud rate of the system clock divided by 8. 
An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where an 
additional bit is sent to mark the first byte of a message, is also supported.

Serial Port A is normally used as a programming port, but may be used either as an asyn-
chronous or as a clocked serial port once application development has been completed and 
the RCM3700 is operating in the Run Mode.

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock 
line synchronously clocks the data in or out. Either of the two communicating devices can 
supply the clock.

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is 
also supported in SDLC format by these two ports.

Serial Port F shares its pins with Serial Ports C and D on header J1, as shown in Figure 7. 
The selection of port(s) depends on your need for two clocked serial ports (Serial Ports C 
and D) vs. a second HDLC serial port (Serial Port F).

Figure 7.  RCM3700 Serial Ports C, D, and F

The serial ports used are selected with the serXOpen function call, where X is the serial 
port (C, D, or F). Remember that RxC and RxD on Serial Ports C and D cannot be used if 
Serial Port F is being used

�4'
�4'

�4�
�4�

�42
�42

.��

.��

.�9

.��

.6�

.6�

1�:���

1�:���

1�:���

1�:���
User’s Manual 29



4.2.2  Ethernet Port

Figure 8 shows the pinout for the RJ-45 Ethernet port (J3). Note that some Ethernet con-
nectors are numbered in reverse to the order used here.

Figure 8.  RJ-45 Ethernet Port Pinout

Two LEDs are placed next to the RJ-45 Ethernet jack, one to indicate an Ethernet link 
(LINK) and one to indicate Ethernet activity (ACT).

The RJ-45 connector is shielded to minimize EMI effects to/from the Ethernet signals.

��������

�&#01�����

(6���3�,�
"6���3�,0
)6���3�,�
$6���3�,0

( .

�&#01�&��2
30 RabbitCore RCM3700



4.2.3  Serial Programming Port

The RCM3700 programming port is accessed through header J2 or over an Ethernet con-
nection via the RabbitLink EG2110. The programming port uses the Rabbit 3000’s Serial 
Port A for communication. Dynamic C uses the programming port to download and debug 
programs.

The programming port is also used for the following operations.

• Cold-boot the Rabbit 3000 on the RCM3700 after a reset.

• Remotely download and debug a program over an Ethernet connection using the 
RabbitLink EG2110.

• Fast copy designated portions of flash memory from one Rabbit-based board (the 
master) to another (the slave) using the Rabbit Cloning Board.

Alternate Uses of the Programming Port

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS input

The programming port may also be used as a serial port via the DIAG connector on the 
programming cable.

In addition to Serial Port A, the Rabbit 3000 startup-mode (SMODE0, SMODE1), status, 
and reset pins are available on the programming port. 

The two startup mode pins determine what happens after a reset—the Rabbit 3000 is 
either cold-booted or the program begins executing at address 0x0000.

The status pin is used by Dynamic C to determine whether a Rabbit microprocessor is 
present. The status output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose CMOS output.

The reset pin is an external input that is used to reset the Rabbit 3000. The serial program-
ming port can be used to force a hard reset on the RCM3700 by asserting the reset signal.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information.
User’s Manual 31



4.3  Serial Programming Cable
The programming cable is used to connect the programming port of the RCM3700 to a PC 
serial COM port. The programming cable converts the RS-232 voltage levels used by the 
PC serial port to the CMOS voltage levels used by the Rabbit 3000.

When the PROG connector on the programming cable is connected to the RCM3700 pro-
gramming port, programs can be downloaded and debugged over the serial interface. 

The DIAG connector of the programming cable may be used on header J2 of the RCM3700 
with the RCM3700 operating in the Run Mode. This allows the programming port to be 
used as a regular serial port.

4.3.1  Changing Between Program Mode and Run Mode

The RCM3700 is automatically in Program Mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in Run Mode when no programming 
cable is attached. When the Rabbit 3000 is reset, the operating mode is determined by the 
status of the SMODE pins. When the programming cable’s PROG connector is attached, 
the SMODE pins are pulled high, placing the Rabbit 3000 in the Program Mode. When the 
programming cable’s PROG connector is not attached, the SMODE pins are pulled low, 
causing the Rabbit 3000 to operate in the Run Mode.

Figure 9.  Switching Between Program Mode and Run Mode

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3

�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3

�
4
'

�
'
!3

�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�%�%,

�
"#

�
"

'
(.

'
)#

��(��" �
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1('"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�((')+

�#�*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+'#-

 "

 (

'(#

'("'""

1
.'
")

9)'*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

'
�
��;
�;<�

�

�
'
��

�
�
�=

�
�

%�>�
������?��=

�
�
�
�

�
��
�

�����������
	�
��

�
�
�
�

/"

	�����	���;99�<'�#��'�#/�#/�!�%�:
��������������������
���
����������	
������������	
�������	�������� ��
�*$�����!�&�#/�����$$��'�#/�)��/��!!�#/���( �7
32 RabbitCore RCM3700



A program “runs” in either mode, but can only be downloaded and debugged when the 
RCM3700 is in the Program Mode.

Refer to the Rabbit 3000 Microprocessor User’s Manual for more information on the pro-
gramming port and the programming cable.

4.3.2  Standalone Operation of the RCM3700

The RCM3700 must be programmed via the RCM3700 Prototyping Board or via a similar 
arrangement on a customer-supplied board. Once the RCM3700 has been programmed 
successfully, remove the programming cable from the programming connector and reset 
the RCM3700. The RCM3700 may be reset by cycling the power off/on or by pressing the 
RESET button on the Prototyping Board. The RCM3700 module may now be removed 
from the Prototyping Board for end-use installation.

CAUTION: Power to the Prototyping Board or other boards should be disconnected 
when removing or installing your RCM3700 module to protect against inadvertent 
shorts across the pins or damage to the RCM3700 if the pins are not plugged in cor-
rectly. Do not reapply power until you have verified that the RCM3700 module is 
plugged in correctly. 
User’s Manual 33



4.4  Other Hardware
4.4.1  Clock Doubler

The RCM3700 takes advantage of the Rabbit 3000 microprocessor’s internal clock doubler. 
A built-in clock doubler allows half-frequency crystals to be used to reduce radiated emis-
sions. The 22.1 MHz frequency specified for the RCM3700 is generated using a 11.06 MHz 
resonator.

The clock doubler may be disabled if 22.1 MHz clock speeds are not required. This will 
reduce power consumption and further reduce radiated emissions. Disable the clock 
doubler by adding a simple configuration macro as shown below.

4.4.2  Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. By 
default, the spectrum spreader is on automatically, but it may also be turned off or set to a 
stronger setting. The spectrum spreader settings may be changed through a simple config-
uration macro as shown below.

NOTE: Refer to the Rabbit 3000 Microprocessor User’s Manual for more information 
on the spectrum-spreading setting and the maximum clock speed.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Add the line CLOCK_DOUBLED=0 to always disable the clock doubler.

The clock doubler is enabled by default, and usually no entry is needed. If you need to 
specify that the clock doubler is always enabled, add the line CLOCK_DOUBLED=1 to 
always enable the clock doubler.

3. Click OK to save the macro. The clock doubler will now remain off whenever you are 
in the project file where you defined the macro.

1. Select the “Defines” tab from the Dynamic C Options > Project Options menu.
2. Normal spreading is the default, and usually no entry is needed. If you need to specify 

normal spreading, add the line
ENABLE_SPREADER=1

For strong spreading, add the line
ENABLE_SPREADER=2

To disable the spectrum spreader, add the line
ENABLE_SPREADER=0

NOTE: The strong spectrum-spreading setting is not recommended since it may limit 
the maximum clock speed or the maximum baud rate. It is unlikely that the strong 
setting will be needed in a real application.

3. Click OK to save the macro. The spectrum spreader will now remain off whenever you 
are in the project file where you defined the macro.
34 RabbitCore RCM3700



4.5  Memory
4.5.1  SRAM

RCM3700 series boards have 256K–512K of SRAM.

4.5.2  Flash EPROM

RCM3700 series boards also have 256K–512K of flash EPROM.

NOTE: Rabbit Semiconductor recommends that any customer applications should not be 
constrained by the sector size of the flash EPROM since it may be necessary to change 
the sector size in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead, use a 
portion of the “user block” area to store persistent data. The functions writeUser-
Block and readUserBlock are provided for this. Refer to the Rabbit 3000 Micropro-
cessor Designer’s Handbook for additional information.

A Flash Memory Bank Select jumper configuration option based on 0 Ω surface-mounted 
resistors exists at header JP1 on the RCM3700 modules. This option, used in conjunction 
with some configuration macros, allows Dynamic C to compile two different co-resident 
programs for the upper and lower halves of the 512K flash in such a way that both pro-
grams start at logical address 0000. This is useful for applications that require a resident 
download manager and a separate downloaded program. See Technical Note TN218, 
Implementing a Serial Download Manager for a 256K Flash, for details.

4.5.3  Serial Flash

A 1Mbyte serial flash is available to store data and Web pages. Sample programs in the 
SAMPLES\RCM3700 folder illustrate the use of the serial flash.

4.5.4  Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes 
automatically.
User’s Manual 35



36 RabbitCore RCM3700



5.  SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with Rabbit Semiconductor single-board com-
puters and other single-board computers based on the Rabbit
microprocessor. Chapter 5 describes the libraries and function
calls related to the RCM3700.

5.1  More About Dynamic C
Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging. A com-
plete reference guide to Dynamic C is contained in the Dynamic C User’s Manual and in 
the Dynamic C Function Reference Manual.

You have a choice of doing your software development in the flash memory or in the 
SRAM included on the RCM3700. The flash memory and SRAM options are selected 
with the Options > Compiler menu.

The advantage of working in RAM is to save wear on the flash memory, which is limited 
to about 100,000 write cycles. The disadvantage is that the code and data might not both 
fit in RAM.

NOTE: An application can be compiled in RAM, but cannot run standalone from RAM 
after the programming cable is disconnected. All standalone applications can only run 
from flash memory.

NOTE: Do not depend on the flash memory sector size or type in your program logic. 
The RCM3700 and Dynamic C were designed to accommodate flash devices with 
various sector sizes in response to the volatility of the flash-memory market. 

Developing software with Dynamic C is simple. Users can write, compile, and test C and 
assembly code without leaving the Dynamic C development environment. Debugging 
occurs while the application runs on the target. Alternatively, users can compile a program 
to an image file for later loading. Dynamic C runs on PCs under Windows 95 and later. 
Programs can be downloaded at baud rates of up to 460,800 bps after the program 
compiles.
User’s Manual 37



Dynamic C has a number of standard features. Some of these standard features are listed 
below.

• Full-feature source and assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:
exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking 

• Loader utility program (Rabbit Field Utility) to load binary images to Rabbit-based tar-
gets without the presence of Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line 
help by creating “function description” block comments using a special format for 
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and 
machine cycle times. Switch between debugging at machine-code level and source-code level by 
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions 
including function calls may be placed into watch expressions. Watch expressions can be updated 
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers 
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be 
detected for debugging purposes. printf output may also be sent to a serial port or file.
38 RabbitCore RCM3700



5.2  Dynamic C Functions
The functions described in this section are for use with the Prototyping Board features. 
The source code is in the RCM37xx.LIB library in the Dynamic C SAMPLES\RCM3700 or 
the SAMPLES\RCM3720 folder, depending on which Prototyping Board you will be using, 
if you need to modify it for your own board design.

Other generic functions applicable to all devices based on Rabbit microprocessors are 
described in the Dynamic C Function Reference Manual.
User’s Manual 39



5.2.1  Board Initialization

Call this function at the beginning of your program. This function initializes Parallel Ports A through G 
for use with the RCM3700 Prototyping Board or the RCM3720 Prototyping Board.

The brdInit function is set up to a default I/O configuration based on the RabbitCore module detected 
at compile time:

• Any RCM3700 RabbitCore module (except the RCM3720) will have its I/O ports configured for an 
RCM3700 Prototyping Board.

• An RCM3720 RabbitCore module will have its I/O ports configured for an RCM3720 Prototyping 
Board.

You may override these default settings to run an RCM3720 RabbitCore module on the RCM3700 Proto-
typing Board or to run another RCM3700 RabbitCore module on the RCM3720 Prototyping Board by 
adding the following macro to the program you will be running.

•  To run an RCM3720 RabbitCore module on an RCM3700 Prototyping Board, add the following 
macro at the top of the program you will be running.

#define RCM3700_PROTOBOARD

Sample programs that are specifically designed for the RCM3700 Prototyping Board already have 
this macro included. When you run a sample program designed for the RCM3700 Prototyping 
Board on an RCM3720, a warning message will be displayed to inform you of that. You can disable 
the warning by commenting out the line indicated by the compiler.

• To run an RCM3700 RabbitCore module (other than the RCM3720) on an RCM3720 Prototyping 
Board, add the following macro at the top of the program you will be running.

#define RCM3720_PROTOBOARD

Summary of Initialization

1. I/O port pins are configured for Prototyping Board operation.
2. Unused configurable I/O are set as tied inputs or outputs.
3. The LCD/keypad module is disabled.
4. RS-485 is not enabled.
5. RS-232 is not enabled.
6. The IrDA transceiver is disabled.
7. LEDs are off.
8. The A/D converter is reset and SCLKB is to 57,600 bps (RCM3700 Prototyping Board only).
9. The A/D converter calibration constants are read (this function cannot run in RAM) (RCM3700 

Prototyping Board only).
10. Ethernet select is disabled.
11. Serial flash select is disabled.

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the RCM3700 
Prototyping Board. Do not use S2 when the LCD/keypad module is installed.

CAUTION: Pins PC1 and PG2 are tied together, and pins PC3 and PG3 are tied together on the 
RCM3700 RabbitCore module. Both pairs of pins are connected to the IrDA transceiver and to 
the RS-232 transceiver via serial ports on the RCM3700 Prototyping Board. Do not enable both 
transceivers on the RCM3700 Prototyping Board at the same time.

RETURN VALUE
None.

void brdInit (void);
40 RabbitCore RCM3700



5.2.2  Analog Inputs

NOTE: The function calls for the A/D converter in this section will work only with the 
RCM3700 Prototyping Board.

Use this function to configure the ADS7870 A/D converter. This function will address the ADS7870 in 
Register Mode only, and will return error if you try the Direct Mode. Section B.1.5 provides additional 
addressing and command information for the ADS7870 A/D converter.

unsigned int anaInConfig(unsigned int 
instructionbyte, unsigned int cmd, long baud);

ADS7870 Signal ADS7870 State RCM3700 Function/State

LN0 Input AIN0

LN1 Input AIN1

LN2 Input AIN2

LN3 Input AIN3

LN4 Input AIN4

LN5 Input AIN5

LN6 Input AIN6

LN7 Input AIN7

/RESET Input Board reset device

RISE/FALL Input Pulled up for SCLK active on rising edge

PIO0 Input Pulled down

PIO1 Input Pulled down

PIO2 Input Pulled down

PIO3 Input Pulled down

CONVERT Input Pulled down

BUSY Output PD1 pulled down; logic high state converter is busy

CCLKCNTRL Input Pulled down; 0 state sets CCLK as input

CCLK Input Pulled down; external conversion clock

SCLK Input PB0; serial data transfer clock

SDI Input PD4; 3-wire mode for serial data input

SDO Output PD5; serial data output /CS driven

/CS Input PD2 pulled up; active-low enables serial interface

BUFIN Input Driven by VREF; reference buffer amplifier

VREF Output Connected to BUFIN

BUFOUT Output VREF output
User’s Manual 41



PARAMETERS
instructionbyte is the instruction byte that will initiate a read or write operation at 8 or 16 bits on 
the designated register address. For example,

checkid = anaInConfig(0x5F, 0, 9600);  // read ID and set baud rate

cmd refers to the command data that configure the registers addressed by the instruction byte. Enter 0 if 
you are performing a read operation. For example,

i = anaInConfig(0x07, 0x3b, 0);  // write ref/osc reg and enable

baud is the serial clock transfer rate of 9600 to 57,600 bps. baud must be set the first time this function 
is called. Enter 0 for this parameter thereafter, for example,

anaInConfig(0x00, 0x00, 9600);  // resets device and sets baud

RETURN VALUE
0 on write operations,
data value on read operations

SEE ALSO
anaInDriver, anaIn, brdInit
42 RabbitCore RCM3700



Reads the voltage of an analog input channel by serial-clocking an 8-bit command to the ADS7870 A/D 
converter by the Direct Mode method. This function assumes that Mode1 (most significant byte first) and 
the A/D converter oscillator have been enabled. See anaInConfig() for the setup.

The conversion begins immediately after the last data bit has been transferred. An exception error will 
occur if Direct Mode bit D7 is not set.

PARAMETERS
cmd contains a gain code and a channel code as follows.

D7—1; D6–D4—Gain Code; D3–D0—Channel Code

Use the following calculation and the tables below to determine cmd:

cmd = 0x80 | (gain_code*16) + channel_code

len, the output bit length, is always 12 for 11-bit conversions

RETURN VALUE

unsigned int anaInDriver(unsigned int cmd, 
unsigned int len);

Gain Code Multiplier

0 x1

1 x2

2 x4

3 x5

4 x8

5 x10

6 x16

7 x20

Channel Code Differential Input 
Lines Channel Code

Single-Ended 
Input Lines*

* Negative input is ground.

4–20 mA 
Lines

0 +AIN0 -AIN1 8 AIN0 AIN0*

1 +AIN2 -AIN3 9 AIN1 AIN1*

2 +AIN4 -AIN5 10 AIN2 AIN2*

3†

† Not accessible on RCM3700 Prototyping Board

+AIN6 -AIN7 11 AIN3 AIN3

4 -AIN0 +AIN1 12 AIN4 AIN4

5 -AIN2 +AIN3 13 AIN5 AIN5

6 -AIN4 +AIN5 14 AIN6 AIN6

7* -AIN6 +AIN7 15 AIN7 AIN7*
User’s Manual 43



A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit conversions (bit 12 for sign)
-1 overflow or out of range
-2 conversion incomplete, busy bit timeout

SEE ALSO
anaInConfig, anaIn, brdInit
44 RabbitCore RCM3700



Reads the value of an analog input channel using the direct method of addressing the ADS7870 A/D 
converter. The A/D converter is enabled the first time this function is called—this will take approxi-
mately 1 second to ensure that the A/D converter capacitor is fully charged.

PARAMETERS
channel is the channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7
opmode is the mode of operation:

SINGLE—single-ended input
DIFF—differential input
mAMP—4–20 mA input

gaincode is the gain code of 0 to 7

unsigned int anaIn(unsigned int channel, 
int opmode, int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1
User’s Manual 45



RETURN VALUE
A value corresponding to the voltage on the analog input channel:

0–2047 for 11-bit A/D conversions (signed 12th bit)
ADOVERFLOW (defined macro = -4096) if overflow or out of range
-4095 if conversion is incomplete or busy-bit timeout

SEE ALSO
anaIn, anaInConfig, anaInDriver
46 RabbitCore RCM3700



Calibrates the response of the desired A/D converter channel as a linear function using the two conver-
sion points provided. Four values are calculated and placed into global tables to be later stored into sim-
ulated EEPROM using the function anaInEEWr(). Each channel will have a linear constant and a 
voltage offset.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

opmode is the mode of operation:

SINGLE—single-ended input
DIFF—differential input
mAMP—milliamp input

gaincode is the gain code of 0 to 7

int anaInCalib(int channel, int opmode, 
int gaincode, int value1, float volts1, 
int value2, float volts2);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1
User’s Manual 47



value1 is the first A/D converter channel value (0–2047)

volts1 is the voltage or current corresponding to the first A/D converter channel value (0 to +20 V or 
4 to 20 mA)

value2 is the second A/D converter channel value (0–2047)

volts2 is the voltage or current corresponding to the first A/D converter channel value (0 to +20 V or 
4 to 20 mA)

RETURN VALUE
0 if successful.

-1 if not able to make calibration constants.

SEE ALSO
anaIn, anaInVolts, anaInmAmps, anaInDiff, anaInCalib, brdInit
48 RabbitCore RCM3700



Reads the state of a single-ended analog input channel and uses the calibration constants previously set 
using anaInCalib to convert it to volts.

PARAMETERS
channel is the channel number (0–7)

gaincode is the gain code of 0 to 7

RETURN VALUE
A voltage value corresponding to the voltage on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO
anaInCalib, anaIn, anaInmAmps, brdInit

float anaInVolts(unsigned int channel, 
unsigned int gaincode);

Channel Code
Single-Ended 
Input Lines*

* Negative input is ground.

Voltage Range†

(V)

† Applies to RCM3700 Prototyping Board.

0 +AIN0 0–20

1 +AIN1 0–20

2 +AIN2 0–20

3 +AIN3 0–20

4 +AIN4 0–20

5 +AIN5 0–20

6 +AIN6 0–20

7 +AIN7 0–2‡

‡ Used for thermistor in sample program.

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1
User’s Manual 49



Reads the state of differential analog input channels and uses the calibration constants previously set 
using anaInCalib to convert it to volts.

PARAMETERS
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7

gaincode is the gain code of 0 to 7

RETURN VALUE
A voltage value corresponding to the voltage on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO
anaInCalib, anaIn, anaInmAmps, brdInit

float anaInDiff(unsigned int channel, 
unsigned int gaincode);

channel DIFF
Voltage Range

(V)

0 +AIN0 -AIN1 -20 to +20*

* Applies to RCM3700 Prototyping Board.

1 +AIN1 -AIN0 —

2 +AIN2 -AIN3 -20 to +20*

3 +AIN3 -AIN2 —

4 +AIN4 -AIN5 -20 to +20*

5 +AIN5 -AIN4 —

6 +AIN6 -AIN7 —

7 +AIN7 -AIN6 —

Gain Code Multiplier Voltage Range*

(V)

* Applies to RCM3700 Prototyping Board.

0 x1 0–20

1 x2 0–10

2 x4 0–5

3 x5 0–4

4 x8 0–2.5

5 x10 0–2

6 x16 0–1.25

7 x20 0–1
50 RabbitCore RCM3700



Reads the state of an analog input channel and uses the calibration constants previously set using 
anaInCalib to convert it to current.

PARAMETERS
channel is the channel number (0–7)

RETURN VALUE
A current value between 4.00 and 20.00 mA corresponding to the current on the analog input channel.

ADOVERFLOW (defined macro = -4096) if overflow or out of range.

SEE ALSO
anaInCalib, anaIn, anaInVolts

float anaInmAmps(unsigned int channel);

Channel Code
4–20 mA

Input Lines*

* Negative input is ground.

0 +AIN0

1 +AIN1

2 +AIN2

3 +AIN3†

† Applies to RCM3700 Prototyp-
ing Board.

4 +AIN4*

5 +AIN5*

6 +AIN6*

7 +AIN7
User’s Manual 51



Reads the calibration constants, gain, and offset for an input based on their designated position in the 
simulated EEPROM area of the flash memory, and places them into global tables for analog inputs. The 
constants are stored in the top 2K of the reserved user block memory area 0x1C00–0x1FFF. Depending 
on the flash size, the following macros can be used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0 to ADC_IN7
opmode is the mode of operation:
SINGLE—single-ended input line
DIFF—differential input line
mAMP—milliamp input line

root int anaInEERd(unsigned int channel, 
unsigned int opmode, unsigned int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode
52 RabbitCore RCM3700



gaincode is the gain code of 0 to 7. The gaincode parameter is ignored when channel is ALLCHAN.

RETURN VALUE
0 if successful.
-1 if address is invalid or out of range.
-2 if there is no valid ID block.

SEE ALSO
anaInEEWr, anaInCalib

Gain Code Voltage Range*

(V)

* Applies to RCM3700 Prototyping 
Board.

0 0–20
1 0–10
2 0–5
3 0–4

4 0–2.5
5 0–2
6 0–1.25
7 0–1
User’s Manual 53



Writes the calibration constants, gain, and offset for an input based from global tables to designated posi-
tions in the simulated EEPROM area of the flash memory. The constants are stored in the top 2K of the 
reserved user block memory area 0x1C00–0x1FFF. Depending on the flash size, the following macros 
can be used to identify the starting address for these locations.

ADC_CALIB_ADDRS, address start of single-ended analog input channels

ADC_CALIB_ADDRD, address start of differential analog input channels

ADC_CALIB_ADDRM, address start of milliamp analog input channels

NOTE: This function cannot be run in RAM.

PARAMETER
channel is the analog input channel number (0 to 7) corresponding to ADC_IN0–ADC_IN7
opmode is the mode of operation:
SINGLE—single-ended input line
DIFF—differential input line
mAMP—milliamp input line

int anaInEEWr(unsigned int channel, int opmode 
unsigned int gaincode);

channel SINGLE DIFF mAMP

0 +AIN0 +AIN0 -AIN1 +AIN0*

* Not accessible on RCM3700 Prototyping Board.

1 +AIN1 +AIN1 -AIN0* +AIN1*

2 +AIN2 +AIN2 -AIN3 +AIN2*

3 +AIN3 +AIN3 -AIN2* +AIN3

4 +AIN4 +AIN4 -AIN5 +AIN4

5 +AIN5 +AIN5 -AIN4* +AIN5

6 +AIN6 +AIN6 -AIN7* +AIN6

7 +AIN7 +AIN7 -AIN6* +AIN7*

ALLCHAN read all channels for selected opmode
54 RabbitCore RCM3700



gaincode is the gain code of 0 to 7. The gaincode parameter is ignored when channel is ALLCHAN.

RETURN VALUE
0 if successful
-1 if address is invalid or out of range.
-2 if there is no valid ID block.
-3 if there is an error writing to flash memory.

SEE ALSO
anaInEEWr, anaInCalib

Configures channels PIO0 to PIO3 on the A/D converter to allow them to be used as digital I/O via 
header JP4 on the RCM3700 Prototyping Board.

Remember to execute the brdInit function before calling this function to prevent a runtime error.

PARAMETER
statemask is a bitwise mask representing JP4 channels 1 to 4. Use logic 0 for inputs and logic 1 for 
outputs in these bit positions:

bits 7–5—0
bit 4—JP4:4
bit 3—JP4:3
bit 2—JP4:2
bit 1—JP4:1
bit 0—0

RETURN VALUE
None.

SEE ALSO
digOut, digIn

Gain Code Voltage Range*

(V)

* Applies to RCM3700 Prototyping 
Board.

0 0–20
1 0–10
2 0–5
3 0–4
4 0–2.5
5 0–2
6 0–1.25
7 0–1

void digConfig(char statemask);
User’s Manual 55



Writes a state to a digital output channel on header JP4 of the RCM3700 Prototyping Board. The PIO0 to 
PIO3 channels on the A/D converter chip are accessed via header JP4 on the RCM3700 Prototyping 
Board.

A runtime error will occur if the brdInit function was not executed before calling this function or if 
the channel is out of range.

PARAMETERS
channel is channel 1 to 4 for JP4:1 to JP4:4

state is a logic state of 0 or 1

RETURN VALUE
None.

SEE ALSO
brdInit, digIn

Reads the state of a digital input channel on header JP4 of the RCM3700 Prototyping Board. The PIO0 to 
PIO3 channels on the A/D converter chip are accessed via header JP4 on the RCM3700 Prototyping 
Board.

A runtime error will occur if the brdInit function was not executed before calling this function or if 
the channel is out of range.

PARAMETERS
channel is channel 1 to 4 for JP4:1 to JP4:4

state is a logic state of 0 or 1

RETURN VALUE
The logic state of the input (0 or 1).

SEE ALSO
brdInit, digOut

void digOut(int channel, int state);

int digIn(int channel);
56 RabbitCore RCM3700



5.2.3  Digital I/O

The RCM3700 was designed to interface with other systems, and so there are no drivers 
written specifically for the I/O. The general Dynamic C read and write functions allow 
you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the auxiliary I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO    // required to enable auxiliary I/O bus

to the beginning of any programs using the auxiliary I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3700 and the SAMPLES/RCM3720 
folders provide further examples.
User’s Manual 57



5.2.4  Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The 
PACKET.LIB library provides packet-based serial functions where packets can be delimited 
by the 9th bit, by transmission gaps, or with user-defined special characters. Both libraries 
provide blocking functions, which do not return until they are finished transmitting or 
receiving, and nonblocking functions, which must be called repeatedly until they are fin-
ished, allowing other functions to be performed between calls. For more information, see 
the Dynamic C Function Reference Manual and Technical Note TN213, Rabbit Serial 
Port Software.

5.2.5  Serial Flash

The serial flash drivers are located in the LIB\SerialFlash folder. Complete informa-
tion on these function calls is provided in the Dynamic C Function Reference Manual.

5.2.6  TCP/IP Drivers

The TCP/IP drivers are located in the LIB\TCPIP folder. Complete information on these 
libraries and the TCP/IP functions is provided in the Dynamic C TCP/IP User’s Manual.
58 RabbitCore RCM3700



5.3  Upgrading Dynamic C
Dynamic C patches that focus on bug fixes are available from time to time. Check the Web 
site www.rabbit.com/support/ for the latest patches, workarounds, and bug fixes.

5.3.1  Add-On Modules

Dynamic C installations are designed for use with the board they are included with, and 
are included at no charge as part of our low-cost kits. Rabbit Semiconductor offers for pur-
chase add-on Dynamic C modules including the popular µC/OS-II real-time operating 
system, as well as PPP, Advanced Encryption Standard (AES), and other select libraries.

In addition to the Web-based technical support included at no extra charge, a one-year 
telephone-based technical support module is also available for purchase.

5.3.1.1  Featured Application Kit

The Secure Embedded Web Application Kit includes three Dynamic C modules that are 
bundled together facilitates the rapid development of secure Web browser interfaces for 
embedded system control.

• Dynamic C FAT file system module.

• Dynamic C RabbitWeb module.

• Dynamic C Secure Sockets Layer (SSL) module.

Appendix E provides additional information about the Secure Embedded Web Application 
Kit.
User’s Manual 59

http://www.rabbit.com/support/


60 RabbitCore RCM3700



6.  USING THE TCP/IP FEATURES

6.1  TCP/IP Connections
Programming and development can be done with the RCM3700 modules without connect-
ing the Ethernet port to a network. However, if you will be running the sample programs 
that use the Ethernet capability or will be doing Ethernet-enabled development, you 
should connect the RCM3700 module’s Ethernet port at this time.

Before proceeding you will need to have the following items.

• If you don’t have Ethernet access, you will need at least a 10Base-T Ethernet card 
(available from your favorite computer supplier) installed in a PC.

• Two RJ-45 straight through Ethernet cables and a hub, or an RJ-45 crossover Ethernet 
cable.

The Ethernet cables and a 10Base-T Ethernet hub are available from Rabbit Semiconduc-
tor in a TCP/IP tool kit. More information is available at www.rabbit.com.

1. Connect the AC adapter and the programming cable as shown in Chapter 2, “Getting 
Started.”

2. Ethernet Connections

There are four options for connecting the RCM3700 module to a network for develop-
ment and runtime purposes. The first two options permit total freedom of action in 
selecting network addresses and use of the “network,” as no action can interfere with 
other users. We recommend one of these options for initial development.

• No LAN — The simplest alternative for desktop development. Connect the RCM3700 
module’s Ethernet port directly to the PC’s network interface card using an RJ-45 
crossover cable. A crossover cable is a special cable that flips some connections 
between the two connectors and permits direct connection of two client systems. A 
standard RJ-45 network cable will not work for this purpose.

• Micro-LAN — Another simple alternative for desktop development. Use a small 
Ethernet 10Base-T hub and connect both the PC’s network interface card and the 
RCM3700 module’s Ethernet port to it using standard network cables.
User’s Manual 61

http://www.rabbit.com/


The following options require more care in address selection and testing actions, as 
conflicts with other users, servers and systems can occur:

• LAN — Connect the RCM3700 module’s Ethernet port to an existing LAN, preferably 
one to which the development PC is already connected. You will need to obtain IP 
addressing information from your network administrator.

• WAN — The RCM3700 is capable of direct connection to the Internet and other Wide 
Area Networks, but exceptional care should be used with IP address settings and all 
network-related programming and development. We recommend that development and 
debugging be done on a local network before connecting a RabbitCore system to the 
Internet.

TIP: Checking and debugging the initial setup on a micro-LAN is recommended before 
connecting the system to a LAN or WAN.

The PC running Dynamic C does not need to be the PC with the Ethernet card.

3. Apply Power

Plug in the AC adapter. The RCM3700 module and Prototyping Board are now ready to 
be used.
62 RabbitCore RCM3700



6.2  TCP/IP Primer on IP Addresses
Obtaining IP addresses to interact over an existing, operating, network can involve a num-
ber of complications, and must usually be done with cooperation from your ISP and/or 
network systems administrator. For this reason, it is suggested that the user begin instead 
by using a direct connection between a PC and the RCM3700 using an Ethernet crossover 
cable or a simple arrangement with a hub. (A crossover cable should not be confused with 
regular straight through cables.)

In order to set up this direct connection, you will have to use a PC without networking, or 
disconnect a PC from the corporate network, or install a second Ethernet adapter and set 
up a separate private network attached to the second Ethernet adapter. Disconnecting your 
PC from the corporate network may be easy or nearly impossible, depending on how it is 
set up. If your PC boots from the network or is dependent on the network for some or all 
of its disks, then it probably should not be disconnected. If a second Ethernet adapter is 
used, be aware that Windows TCP/IP will send messages to one adapter or the other, 
depending on the IP address and the binding order in Microsoft products. Thus you should 
have different ranges of IP addresses on your private network from those used on the cor-
porate network. If both networks service the same IP address, then Windows may send a 
packet intended for your private network to the corporate network. A similar situation will 
take place if you use a dial-up line to send a packet to the Internet. Windows may try to 
send it via the local Ethernet network if it is also valid for that network.

The following IP addresses are set aside for local networks and are not allowed on the 
Internet:  10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to 
192.168.255.255.

The RCM3700 uses a 10/100-compatible Ethernet connection with a 10Base-T interface, 
which is the most common scheme. The RJ-45 connectors are similar to U.S. style tele-
phone connectors, except they are larger and have 8 contacts. 

An alternative to the direct connection using a crossover cable is a direct connection using 
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are 
low in cost and are readily available. The RCM3700 uses 10 Mbps Ethernet, so the hub or 
Ethernet adapter must be either a 10 Mbps unit or a 10/100 unit that adapts to 10 Mbps.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines 
include a combination of proxy servers and firewalls that filter and multiplex Internet traf-
fic. In the configuration below, the RCM3700 could be given a fixed address so any of the 
computers on the local network would be able to contact it. It may be possible to configure 
the firewall or proxy server to allow hosts on the Internet to directly contact the controller, 
but it would probably be easier to place the controller directly on the external network out-
side of the firewall. This avoids some configuration complications by sacrificing some 
security.
User’s Manual 63



If your system administrator can give you an Ethernet cable along with its IP address, the 
netmask and the gateway address, then you may be able to run the sample programs with-
out having to setup a direct connection between your computer and the RCM3700. You 
will also need the IP address of the nameserver, the name or IP address of your mail 
server, and your domain name for some of the sample programs.

Hub(s)

Firewall
Proxy
Server

T1 in
Adapter

Ethernet Ethernet

Network

RCM3700
SystemTypical Corporate Network
64 RabbitCore RCM3700



6.2.1  IP Addresses Explained

IP (Internet Protocol) addresses are expressed as 4 decimal numbers separated by periods, 
for example:

216.103.126.155

10.1.1.6

Each decimal number must be between 0 and 255. The total IP address is a 32-bit number 
consisting of the 4 bytes expressed as shown above. A local network uses a group of adja-
cent IP addresses. There are always 2N IP addresses in a local network. The netmask (also 
called subnet mask) determines how many IP addresses belong to the local network. The 
netmask is also a 32-bit address expressed in the same form as the IP address. An example 
netmask is:

255.255.255.0

This netmask has 8 zero bits in the least significant portion, and this means that 28 
addresses are a part of the local network. Applied to the IP address above 
(216.103.126.155), this netmask would indicate that the following IP addresses belong to 
the local network:

216.103.126.0

216.103.126.1

216.103.126.2

etc.

216.103.126.254

216.103.126.255

The lowest and highest address are reserved for special purposes. The lowest address 
(216.102.126.0) is used to identify the local network. The highest address 
(216.102.126.255) is used as a broadcast address. Usually one other address is used for the 
address of the gateway out of the network. This leaves 256 - 3 = 253 available IP 
addresses for the example given.
User’s Manual 65



6.2.2  How IP Addresses are Used

The actual hardware connection via an Ethernet uses Ethernet adapter addresses (also 
called MAC addresses). These are 48-bit addresses and are unique for every Ethernet 
adapter manufactured. In order to send a packet to another computer, given the IP address 
of the other computer, it is first determined if the packet needs to be sent directly to the 
other computer or to the gateway. In either case, there is an Ethernet address on the local 
network to which the packet must be sent. A table is maintained to allow the protocol 
driver to determine the MAC address corresponding to a particular IP address. If the table 
is empty, the MAC address is determined by sending an Ethernet broadcast packet to all 
devices on the local network asking the device with the desired IP address to answer with 
its MAC address. In this way, the table entry can be filled in. If no device answers, then 
the device is nonexistent or inoperative, and the packet cannot be sent.

Some IP address ranges are reserved for use on internal networks, and can be allocated 
freely as long as no two internal hosts have the same IP address. These internal IP 
addresses are not routed to the Internet, and any internal hosts using one of these reserved 
IP addresses cannot communicate on the external Internet without being connected to a 
host that has a valid Internet IP address. The host would either translate the data, or it 
would act as a proxy.

Each RCM3700 RabbitCore module has its own unique MAC address, which consists of 
the prefix 0090C2 followed by a code that is unique to each RCM3700 module. For exam-
ple, a MAC address might be 0090C2C002C0.

TIP: You can always obtain the MAC address on your board by running the sample pro-
gram DISPLAY_MAC.C from the SAMPLES\TCPIP folder.
66 RabbitCore RCM3700



6.2.3  Dynamically Assigned Internet Addresses

In many instances, devices on a network do not have fixed IP addresses. This is the case 
when, for example, you are assigned an IP address dynamically by your dial-up Internet 
service provider (ISP) or when you have a device that provides your IP addresses using 
the Dynamic Host Configuration Protocol (DHCP). The RCM3700 modules can use such 
IP addresses to send and receive packets on the Internet, but you must take into account 
that this IP address may only be valid for the duration of the call or for a period of time, 
and could be a private IP address that is not directly accessible to others on the Internet. 
These addresses can be used to perform some Internet tasks such as sending e-mail or 
browsing the Web, but it is more difficult to participate in conversations that originate 
elsewhere on the Internet. If you want to find out this dynamically assigned IP address, 
under Windows 98 you can run the winipcfg program while you are connected and look 
at the interface used to connect to the Internet.

Many networks use IP addresses that are assigned using DHCP. When your computer 
comes up, and periodically after that, it requests its networking information from a DHCP 
server. The DHCP server may try to give you the same address each time, but a fixed IP 
address is usually not guaranteed.

If you are not concerned about accessing the RCM3700 from the Internet, you can place 
the RCM3700 on the internal network using an IP address assigned either statically or 
through DHCP.
User’s Manual 67



6.3  Placing Your Device on the Network
In many corporate settings, users are isolated from the Internet by a firewall and/or a 
proxy server. These devices attempt to secure the company from unauthorized network 
traffic, and usually work by disallowing traffic that did not originate from inside the net-
work. If you want users on the Internet to communicate with your RCM3700, you have 
several options. You can either place the RCM3700 directly on the Internet with a real 
Internet address or place it behind the firewall. If you place the RCM3700 behind the fire-
wall, you need to configure the firewall to translate and forward packets from the Internet 
to the RCM3700.
68 RabbitCore RCM3700



6.4  Running TCP/IP Sample Programs
We have provided a number of sample programs demonstrating various uses of TCP/IP for 
networking embedded systems. These programs require you to connect your PC and the 
RCM3700 board together on the same network. This network can be a local private net-
work (preferred for initial experimentation and debugging), or a connection via the Internet.

RCM3700

User’s PC

Ethernet
crossover 
cable

Direct Connection
(network of 2 computers)

RCM3700

Hub

Ethernet
cables

To additional
network
elements

Direct Connection Using a Hub

System
System
User’s Manual 69



6.4.1  How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run 
many of our sample programs. You will see a TCPCONFIG macro. This macro tells 
Dynamic C to select your configuration from a list of default configurations. You will 
have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS, MY_NET-
MASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations 
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway 
to 10.10.6.1. If you would like to change the default values, for example, to use an IP 
address of 10.1.1.2 for the RCM3700 board, and 10.1.1.1 for your PC, you can edit 
the values in the section that directly follows the “General Configuration” comment in 
the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater 
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB 
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the TCP_CON-
FIG.LIB library in the LIB\TCPIP directory. More information is available in the 
Dynamic C TCP/IP User’s Manual.
70 RabbitCore RCM3700



6.4.2  How to Set Up your Computer for Direct Connect

Follow these instructions to set up your PC or notebook. Check with your administrator if 
you are unable to change the settings as described here since you may need administrator 
privileges. The instructions are specifically for Windows 2000, but the interface is similar 
for other versions of Windows.

TIP: If you are using a PC that is already on a network, you will disconnect the PC from 
that network to run these sample programs. Write down the existing settings before 
changing them to facilitate restoring them when you are finished with the sample pro-
grams and reconnect your PC to the network.

1. Go to the control panel (Start > Settings > Control Panel), and then double-click the 
Network icon.

2. Select the network interface card used for the Ethernet interface you intend to use (e.g., 
TCP/IP Xircom Credit Card Network Adapter) and click on the “Properties” button. 
Depending on which version of Windows your PC is running, you may have to select 
the “Local Area Connection” first, and then click on the “Properties” button to bring up 
the Ethernet interface dialog. Then “Configure” your interface card for a “10Base-T 
Half-Duplex” or an “Auto-Negotiation” connection on the “Advanced” tab.

NOTE: Your network interface card will likely have a different name.

3. Now select the IP Address tab, and check Specify an IP Address, or select TCP/IP and 
click on “Properties” to assign an IP address to your computer (this will disable “obtain 
an IP address automatically”):

IP Address : 10.10.6.101

Netmask : 255.255.255.0

Default gateway : 10.10.6.1

4. Click <OK> or <Close> to exit the various dialog boxes.

RCM3700

User’s PC

Ethernet
crossover 
cable

IP 10.10.6.101
Netmask
255.255.255.0

   

      

 

 

Direct Connection PC to RCM3700 Board

System
User’s Manual 71



6.5  Run the PINGME.C Sample Program
Connect the crossover cable from your computer’s Ethernet port to the RCM3700 board’s 
RJ-45 Ethernet connector. Open this sample program from the SAMPLES\TCPIP\ICMP 
folder, compile the program, and start it running under Dynamic C. When the program 
starts running, the green LINK light on the RCM3700 module should be on to indicate an 
Ethernet connection is made. (Note: If the LNK light does not light, you may not be using 
a crossover cable, or if you are using a hub perhaps the power is off on the hub.)

The next step is to ping the board from your PC. This can be done by bringing up the MS-
DOS window and running the pingme program:

ping 10.10.6.100

or by Start > Run

and typing the entry

ping 10.10.6.100

Notice that the yellow ACT light flashes on the RCM3700 module while the ping is taking 
place, and indicates the transfer of data. The ping routine will ping the board four times 
and write a summary message on the screen describing the operation.

6.6  Running Additional Sample Programs With Direct Connect
The sample programs discussed here are in the Dynamic C SAMPLES\RCM3700\TCPIP\ 
and the SAMPLES\RCM3720\TCPIP\ folders.

The program BROWSELED.C demonstrates how to make the RCM3700 board be a Web 
server. Two “LEDs” are created on the Web page, along with two buttons to toggle them. 
Users can change the status of the lights from the Web browser. The LEDs on the Proto-
typing Board match the ones on the Web page. As long as you have not modified the 
TCPCONFIG 1 macro in the sample program, enter the following server address in your 
Web browser to bring up the Web page served by the sample program.

http://10.10.6.100.

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

The optional LCD/keypad module (see Appendix C) must be plugged in to the RCM3700 
Prototyping Board when using this sample program. The sample program MBOXDEMO.C 
implements a Web server that allows e-mail messages to be entered and then shown on the 
LCD/keypad module. The keypad allows the user to scroll within messages, flip to other 
e-mails, mark messages as read, and delete e-mails. When a new e-mail arrives, an LED 
(on the Prototyping Board and LCD/keypad module) turns on, then turns back off once the 
message has been marked as read. A log of all e-mail actions is kept, and can be displayed 
in the Web browser. All current e-mails can also be read with the Web browser.

The sample program PINGLED.C demonstrates ICMP by pinging a remote host. It will 
flash LEDs DS1 and DS2 on the Prototyping Board when a ping is sent and received.
72 RabbitCore RCM3700



The sample program SMTP.C allows you to send an e-mail when a switch on the Prototyp-
ing Board is pressed. Follow the instructions included with the sample program. LED DS1 
on the Prototyping Board will light up when sending e-mail. Note that pin PB7 is con-
nected to both switch S2 and to the external I/O bus on the Prototyping Board, and so 
switch S2 should not be used with Ethernet operations.

6.6.1  RabbitWeb Sample Programs

You will need to have the Dynamic C RabbitWeb module installed before you run the 
sample programs described in this section. The sample programs can be found in the SAM-
PLES\RCM3700\TCPIP\RABBITWEB folder.

• BLINKLEDS.C—This program demonstrates a basic example to change the rate at 
which the DS1 and DS2 LEDs on the RCM3700 Prototyping Board or the RCM3720 
Prototyping Board blink.

• DOORMONITOR.C—The optional LCD/keypad module (see Appendix C) must be plugged 
in to the RCM3700 Prototyping Board when using this sample program. This program 
demonstrates adding and monitoring passwords entered via the LCD/keypad module.

• HANGMAN_GAME.C—This sample program based on the children's hangman word 
guessing game demonstrates some RabbitWeb capabilities using the RCM3720 Proto-
typing Board.

• LEDS_CHECKBOX.C—This sample program provides a bare-bones sample of using 
some RabbitWeb features to control digital I/O using the RCM3720 Prototyping Board.

• SPRINKLER.C—This program demonstrates how to schedule times for the digital out-
puts in a 24-hour period using the RCM3700 Prototyping Board or the RCM3720 
Prototyping Board.

• TEMPERATURE.C—This program demonstrates the use of a thermistor with the 
RCM3700 Prototyping Board to measure temperature, and it also demonstrates some 
simple #web variable registration along with the authentication features. An e-mail 
message will be sent if the current temperature exceeds the minimum or maximum lim-
its set by the user.

Before running this sample program, you will have to install the thermistor included in 
the RCM3700 Development Kit at location J7 on the RCM3700 Prototyping Board, 
which is connected to analog input THERM_IN7.
User’s Manual 73



6.6.2  Secure Sockets Layer (SSL) Sample Programs

You will need to have the Dynamic C SSL module installed before you run the sample 
programs described in this section. The sample programs can be found in the SAMPLES\
RCM3700\TCPIP\SSL folder.

Before running these sample programs, you will have to create an SSL certificate. The 
SSL walkthrough in the online documentation for the Dynamic C SSL module explains 
how to do this.

• SSL_BROWSELED.C—This program demonstrates a basic controller running a Web 
page. Two “LEDs” are created on the Web page, along with two buttons to toggle them. 
Users can change the status of the lights from the Web browser. The LEDs on the Pro-
totyping Board match the ones on the Web page. As long as you have not modified the 
TCPCONFIG 1 macro in the sample program, enter the following server address in your 
Web browser to bring up the Web page served by the sample program.

http://10.10.6.100

Otherwise use the TCP/IP settings you entered in the TCP_CONFIG.LIB library.

• SSL_MBOXDEMO.C—Implements a Web server that allows e-mail messages to be 
entered and then shown on the LCD/keypad module. The keypad allows the user to 
scroll within messages, flip to other e-mails, mark messages as read, and delete e-mails. 
When a new e-mail arrives, an LED (on the Prototyping Board and LCD/keypad 
module) turns on, then turns back off once the message has been marked as read. A log 
of all e-mail actions is kept, and can be displayed in the Web browser. All current e-
mails can also be read with the Web browser.

6.6.3  Dynamic C FAT File System, RabbitWeb, and SSL Modules

The Dynamic C FAT File System, RabbitWeb, and Secure Sockets Layer (SSL) modules 
have been integrated into a sample program for the RCM3700. The sample program 
requires that you have installed the Dynamic C FAT File System, RabbitWeb, and SSL 
modules. Visit our Web site at www.rabbit.com or contact your Rabbit Semiconductor 
sales representative or authorized distributor for further information on these Dynamic C 
modules.

NOTE: These sample programs will work only on the RCM3700 and the RCM3720, but 
not the RCM3710. The RCM3700 RabbitCore modules do not support the download 
manager portion of the sample program.

TIP:  Before running any of the sample programs described in this section, you should 
look at and run sample programs for the TCP/IP ZSERVER.LIB library, the FAT file 
system, RabbitWeb, SSL, the download manager, and HTTP upload to become more 
familiar with their operation.

The INTEGRATION.C sample program in the SAMPLES\RCM3700\Module_Integration 
and the SAMPLES\RCM3720\Module_Integration folders demonstrate the use of the 
TCP/IP ZSERVER.LIB library and FAT file system functionality with RabbitWeb 
dynamic HTML content, all secured using SSL. The sample program also supports 
dynamic updates of both the application and its resources using the Rabbit Download 
74 RabbitCore RCM3700

http://www.rabbit.com/products/dc/


Manager (DLM) and HTTP upload capability, respectively—note that neither of these 
currently supports SSL security.

Before you run the INTEGRATION.C sample program, you will first need to format and 
partition the serial flash. Find the FMT_DEVICE.C sample program in the Dynamic C 
SAMPLES\FileSystem folder. Open this sample program with the File > Open menu, 
then compile and run it by pressing F9. FMT_DEVICE.C formats the serial flash for use 
with the FAT file system. If the serial flash is already formatted, FMT_DEVICE.C gives 
you the option of erasing the serial flash and reformatting it with a single large partition. 
This erasure does not check for non-FAT partitions and will destroy all existing partitions.

Next, run the INTEGRATION_FAT_SETUP.C sample program in the Dynamic C 
SAMPLES\RCM3700\Module_Integration folder. Open this sample program with the 
File > Open menu, then compile and run it by pressing F9. INTEGRATION_FAT_
SETUP.C will copy some files into the FAT file system via #ximport.

The last step to complete before you can run the INTEGRATION.C sample program is to 
create an SSL certificate. The SSL walkthrough in the online documentation for the 
Dynamic C SSL module explains how to do this.

Now you are ready to run the INTEGRATION.C sample program in the Dynamic C 
SAMPLES\RCM3700\Module_Integration folder. Open this sample program with the 
File > Open menu, then compile and run it by pressing F9.

NOTE: Since HTTP upload and the Dynamic C SSL module currently do not work 
together, compiling the INTEGRATION.C sample program will generate a serious 
warning. Ignore the warning because we are not using HTTP upload over SSL. A 
macro (HTTP_UPLOAD_SSL_SUPRESS_WARNING) is available to suppress the 
warning message.

Open a Web browser, and browse to the device using the IP address from the TCP_
CONFIG.LIB library or the URL you assigned to the device. The humidity monitor will 
be displayed in your Web browser. This page is accessible via plain HTTP or over SSL-
secured HTTPS. Click on the administrator link to bring up the admin page, which is 
secured automatically using SSL with a user name and a password. Use myadmin for user 
name and use myadmin for the password.

The admin page demonstrates some RabbitWeb capabilities and provides access to the 
HTTP upload page. Click the upload link to bring up the HTTP upload page, which allows 
you to choose new files for both the humidity monitor and the admin page. If your browser 
prompts you again for your user name and password, they are the same as before.

Note that the upload page is a static page included in the program flash, and can only be 
updated by recompiling and downloading the application. This way, the page is protected 
so that you cannot accidentally change it, possibly restricting yourself from performing 
future updates. If you wish, you may place the upload page into the FAT file system to 
allow the upload page to be updated.
User’s Manual 75



To try out the update capability, click the upload link on the admin page and choose a 
simple text file to replace monitor.ztm. Open another browser window and load the 
main Web page. You will see that your text file has replaced the humidity monitor. To 
restore the monitor, go back to the other window, click back to go to the upload page 
again, and choose HUMIDITY_MONITOR.ZHTML to replace monitor.ztm, and click 
Upload.

When you refresh the page in your browser, you will see that the page has been restored. 
You have successfully updated and restored your application's files remotely!

When you are finished with the INTEGRATION.C sample program, you need to follow a 
special shutdown procedure before powering off to prevent any possible corruption of the 
FAT file system. Press and hold switch S1 on the Prototyping Board until LED DS1 blinks 
rapidly to indicate that it is now safe to turn the RCM3700 off. This procedure can be 
modified by the user to provide other application-specific shutdown tasks.

6.7  Where Do I Go From Here?
NOTE: If you purchased your RCM3700 through a distributor or through a Rabbit Semi-

conductor partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Semiconductor Technical Bulletin Board at 
www.rabbit.com/support/bb/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.

If the sample programs ran fine, you are now ready to go on.

Additional sample programs are described in the Dynamic C TCP/IP User’s Manual.

Please refer to the Dynamic C TCP/IP User’s Manual to develop your own applications. 
An Introduction to TCP/IP provides background information on TCP/IP, and is available 
on the CD and on our Web site.
76 RabbitCore RCM3700

http://www.rabbit.com/
http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml


APPENDIX A.  RCM3700 SPECIFICATIONS

Appendix A provides the specifications for the RCM3700, and
describes the conformal coating.
User’s Manual 77



A.1  Electrical and Mechanical Characteristics
Figure A-1 shows the mechanical dimensions for the RCM3700.

Figure A-1.  RCM3700 Dimensions

NOTE: All measurements are in inches followed by millimeters enclosed in parentheses. 
All dimensions have a manufacturing tolerance of ±0.01" (0.2 mm).

���������������������	� !""
�������������������������������
�������(�������������������
���������3

�
"#

�
"

'
(.

'
)#

��( ��"�
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1( '"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�(( ')+

�# �*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+ '#-

 "

 (

'(#

'(" '""

1
. '
")

9) '*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

!6
()

�)
6)
�

!6
)+

�-
6)
�

!6
.-

�"
)�!6

!$
)

�(
6$
�

"6-*!
�+#6-�

"6-*!
�+#6-�

(6"!!
�)!6*�

(6
"!

!
�)
!6
*�

!6
()

�)
6)
�

!6
)+

�-
6)
�

!6
.-

�"
)�!6

!$
)

�(
6$
�

!6
-!

$
�"
)6
!�

!6
"-

#
�+
6*
�

!6(!!
�"6*�

!6
#$

�(
"�

!6
#$

�(
"�
78 RabbitCore RCM3700



It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the 
RCM3700 in all directions when the RCM3700 is incorporated into an assembly that 
includes other printed circuit boards. An “exclusion zone” of 0.16" (4 mm) is recom-
mended below the RCM3700 when the RCM3700 is plugged into another assembly using 
the shortest connectors for header J1. Figure A-2 shows this “exclusion zone.”

Figure A-2.  RCM3700 “Exclusion Zone”

!6
($ �#
�

!6
($ �#
�

%(�������
4���

"6-*!
�+#6-�!6!#

�(�

!6
#$

�(
"�

(6"!!
�)!6*�

!6
#$

�(
"�

!6!#
�(�

!6!#
�(�

!6
!# �(
�

!6!#
�(�

!6
!# �(
�

User’s Manual 79



Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3700.

Table A-1.  RabbitCore RCM3700 Specifications

Parameter RCM3700 RCM3710 RCM3720

Microprocessor Low-EMI Rabbit 3000® at 22.1 MHz

Ethernet Port 10/100-compatible with 10Base-T interface, RJ-45, 2 LEDs

Flash Memory 512K 256K 512K

SRAM 512K 128K 256K

Serial Flash Memory 1Mbyte

Backup Battery Connection for user-supplied backup battery
(to support RTC and SRAM)

General-Purpose I/O
33 parallel digital I/0 lines:

• 31 configurable I/O
•  2 fixed outputs

Additional I/O Reset

Auxiliary I/O Bus Can be configured for 8 data lines and
5 address lines (shared with parallel I/O lines), plus I/O read/write

Serial Ports

Four 3.3 V CMOS-compatible ports configurable as:
• 4 asynchronous serial ports (with IrDA) or

• 3 clocked serial ports (SPI) plus 1 HDLC (with IrDA) or

• 1 clocked serial port (SPI) plus 2 HDLC serial ports (with IrDA)

Serial Rate Maximum asynchronous baud rate = CLK/8

Slave Interface
A slave port allows the RCM3700 to be used as an intelligent peripheral 
device slaved to a master processor, which may either be another Rabbit 
3000 or any other type of processor

Real-Time Clock Yes

Timers Ten 8-bit timers (6 cascadable, 3 reserved for internal peripherals),
one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Pulse-Width Modulators 4 PWM output channels with 10-bit free-running counter
and priority interrupts 

Input Capture/
Quadrature Decoder

2-channel input capture can be used to time input signals from various 
port pins
• 1 quadrature decoder unit accepts inputs from external incremental 

encoder modules or
• 1 quadrature decoder unit shared with 2 PWM channels

Power 4.75–5.25 V DC
100 mA @ 22.1 MHz, 5 V; 78 mA @ 11.05 MHz, 5 V

Operating Temperature –40°C to +70°C

Humidity 5% to 95%, noncondensing

Connectors One 2 x 20, 0.1" pitch

Board Size 1.20" × 2.95" × 0.89"
(30 mm × 75 mm × 23 mm)
80 RabbitCore RCM3700



A.1.1  Headers

The RCM3700 uses one header at J1 for physical connection to other boards. J1 is a 
2 × 20 SMT header with a 0.1" pin spacing.

Figure A-3 shows the layout of another board for the RCM3700 to be plugged into. These 
values are relative to the designated fiducial (reference point).

Figure A-3.  User Board Footprint for RCM3700

�'7)+!!�2

�=����

/(

!6"$)
�$6+�

!6!!!
�!6!�

!6!$!
�(6*�

!6"-!
�+6#�
User’s Manual 81



A.2  Bus Loading
You must pay careful attention to bus loading when designing an interface to the 
RCM3700. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3700 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3700 output ports. 
Be sure to add the loads for the devices you are using in your custom system and verify 
that they do not exceed the values in Table A-3.

Table A-2.  Capacitance of Rabbit 3000 I/O Ports

I/O Ports
Input 

Capacitance
(pF)

Output 
Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3.  External Capacitive Bus Loading -40°C to +85°C

Output Port Clock Speed 
(MHz)

Maximum External 
Capacitive Loading (pF)

All I/O lines with clock 
doubler enabled 22.1 100
82 RabbitCore RCM3700



Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external 
I/O read and write cycles.

Figure A-4.  I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

��;�

��;�

%(��������5*������6���������������$���������7

' &

�A(*B!C

%(��������5*�������6���������������$���������7

' &

�A(*B!C

�����

�����

�( �?

�( �? �"

�����

�"

�%12�	

���'�,

���5�

�%12�	

�A+B!C �����

����>=

�
�;

�'�,

���'�,

�'�,

���'�,

�����

�%12�	

�'�,

���'�,

�����

�%12�	

������A+B!C

�'�,
�'�,

���'�,

���5�

�'�,

���'�,

���5�

�%12�	 �%12�	

��8D� ���8D
User’s Manual 83



Table A-4 lists the delays in gross memory access time.

The measurements are taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = VDD ±10%

• Internal clock to nonloaded CLK pin delay ≤ 1 ns @ 85°C/3.0 V

The clock to address output delays are similar, and apply to the following delays.

• Tadr, the clock to address delay

• TCSx, the clock to memory chip select delay

• TIOCSx, the clock to I/O chip select delay

• TIORD, the clock to I/O read strobe delay

• TIOWR, the clock to I/O write strobe delay

• TBUFEN, the clock to I/O buffer enable delay 

The data setup time delays are similar for both Tsetup and Thold.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is 
shortened (sometimes lengthened) by a maximum amount given in the table above. The 
shortening takes place by shortening the high part of the clock. If the doubler is not 
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Technical Note TN227, Interfacing External I/O with Rabbit 2000/3000 Designs, con-
tains suggestions for interfacing I/O devices to the Rabbit 3000 microprocessors.

Table A-4.  Data and Clock Delays VIN ±10%, Temp, -40°C–+85°C (maximum)

VIN

Clock to Address Output Delay
(ns) Data Setup 

Time Delay
(ns)

Spectrum Spreader Delay
(ns)

30 pF 60 pF 90 pF
Normal

no dbl/dbl
Strong

no dbl/dbl

3.3 V 6 8 11 1 3/4.5 4.5/9
84 RabbitCore RCM3700



A.3  Rabbit 3000 DC Characteristics

Stresses beyond those listed in Table A-5 may cause permanent damage. The ratings are 
stress ratings only, and functional operation of the Rabbit 3000 chip at these or any other 
conditions beyond those indicated in this section is not implied. Exposure to the absolute 
maximum rating conditions for extended periods may affect the reliability of the Rabbit 
3000 chip.

Table A-6 outlines the DC characteristics for the Rabbit 3000 at 3.3 V over the recom-
mended operating temperature range from TA = –55°C to +85°C, VDD = 3.0 V to 3.6 V.

Table A-5.  Rabbit 3000 Absolute Maximum Ratings

Symbol Parameter Maximum Rating

TA Operating Temperature -55° to +85°C

TS Storage Temperature -65° to +150°C

Maximum Input Voltage:
• Oscillator Buffer Input
• 5-V-tolerant I/O

VDD + 0.5 V
5.5 V

VDD Maximum Operating Voltage 3.6 V

Table A-6.  3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

VDD Supply Voltage 3.0 3.3 3.6 V

VIH High-Level Input Voltage 2.0 V

VIL Low-Level Input Voltage 0.8 V

VOH High-Level Output Voltage
IOH = 6.8 mA,
VDD = VDD (min)

0.7 x 
VDD

V

VOL Low-Level Output Voltage
IOL = 6.8 mA,
VDD = VDD (min) 0.4 V

IIH
High-Level Input Current
(absolute worst case, all buffers)

VIN = VDD,
VDD = VDD (max) 10 µA

IIL
Low-Level Input Current
(absolute worst case, all buffers)

VIN = VSS,
VDD = VDD (max) -10 µA

IOZ

High-Impedance State 
Output Current
(absolute worst case, all buffers)

VIN = VDD or VSS,
VDD = VDD (max), no pull-up -10 10 µA
User’s Manual 85



A.4  I/O Buffer Sourcing and Sinking Limit
Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking 
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a 
22.1 MHz CPU clock and capacitive loading on address and data lines of less than 100 pF 
per pin. The absolute maximum operating voltage on all I/O is 5.5 V.

Table A-7 shows the AC and DC output drive limits of the parallel I/O buffers when the 
Rabbit 3000 is used in the RCM3700.

Under certain conditions, you can exceed the limits outlined in Table A-7. See the Rabbit 
3000 Microprocessor User’s Manual for additional information.

Table A-7.  I/O Buffer Sourcing and Sinking Capability

Pin Name

Output Drive (Full AC Switching)

Sourcing/Sinking Limits
(mA)

Sourcing Sinking

All data, address, and I/O 
lines with clock doubler 
enabled

6.8 6.8
86 RabbitCore RCM3700



A.5  Conformal Coating
The areas around the 32 kHz real-time clock crystal oscillator have had the Dow Corning 
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown 
in Figure A-5. The conformal coating protects these high-impedance circuits from the 
effects of moisture and contaminants over time.

Figure A-5.  RCM3700 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering 
procedures for surface-mounted components.  A new conformal coating should then be 
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303, Con-
formal Coatings.

'
�E
��������
���;
����

�
"#

�
"

'
(.

'
)#

��( ��"�
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1( '"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�(( ')+

�# �*
1*

'"-
/�

"

9(

'#!

'(!

:(

�+ '#-

 "

 (

'(#

'(" '""

1
. '
")

9) '*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+
User’s Manual 87



A.6  Jumper Configurations
Figure A-6 shows the header locations used to configure the various RCM3700 options 
via jumpers. 

Figure A-6.  Location of RCM3700 Configurable Positions

Table A-8 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-8.  RCM3700 Jumper Configurations

Header Description Pins Connected Factory 
Default

JP1 Flash Memory Bank Select
1–2 Normal Mode ×
2–3 Bank Mode

JP2 SRAM Size
1–2 128K–256K RCM3710

RCM3720

2–3 512K RCM3700

JP3 Flash Memory Size

1–2 256K RCM3710

2–3 512K
RCM3700
RCM3720

,�������

/�( /�)

/�"
88 RabbitCore RCM3700



APPENDIX B.  PROTOTYPING BOARD

Two different Prototyping Boards are available for the
RCM3700 series of RabbitCore modules. The RCM3700 Proto-
typing Board has power-supply connections and also provides
some basic I/O peripherals (RS-232, RS-485, A/D converter,
IrDA transceiver, LEDs, and switches), as well as a prototyping
area for more advanced hardware development. The RCM3720
Prototyping Board was designed specifically for the Ethernet
Connection Kit, and only has the power-supply connections,
prototyping area, LEDs, switches, and space for an optional
RS-232 chip to be installed.

Either Prototyping Board may be used with the full line of
RCM3700 RabbitCore modules. Appendix B describes the fea-
tures and accessories for the two prototyping boards.
User’s Manual 89



R
C

M
37

00
B.1  RCM3700 Prototyping Board
The RCM3700 Prototyping Board included in the RCM3700 Development Kit makes it 
easy to connect an RCM3700 module to a power supply and a PC workstation for devel-
opment. It also provides some basic I/O peripherals (RS-232, RS-485, A/D converter, 
IrDA transceiver, LEDs, and switches), as well as a prototyping area for more advanced 
hardware development.

For the most basic level of evaluation and development, the RCM3700 Prototyping Board 
can be used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the 
RCM3700 module itself.

The RCM3700 Prototyping Board is shown below in Figure B-1, with its main features 
identified.

Figure B-1.  RCM3700 Prototyping Board

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

��
#�
��

"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
��

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

��
(

��
)

��
*

��
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

��
!

��
"

��
#

��
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�
?��
��=>�

�
?��
 ��

�����
�?���

1���
 ���

�'7)+!!�7
;>��
�,�����
��8��;��

�*��@�)6)��@���;
�	��%>���

�'7)+!!
7
;>��

'
�����
�

1���
�?�����

�7����
�
��=��<
����

 '��&��=�;
7
;>��

'
������
��

����
��������F��

��
><G8
��
��
�
��=��<�����

'*)

��G#.*
��G")"
8��;��

����
<
��=>��

����
<
��E������
'
�F���
��
>�;

%���>=
%������
90 RabbitCore RCM3700



R
C

M
37

00
B.1.1  Features

• Power Connection—A 3-pin header is provided for connection to the power supply. 
Note that the 3-pin header is symmetrical, with both outer pins connected to ground and 
the center pin connected to the raw DCIN input. The cable of the AC adapter provided 
with the North American version of the Development Kit ends in a plug that connects 
to the power-supply header, and can be connected to the 3-pin header in either orienta-
tion. A similar header plug leading to bare leads is provided for overseas customers.

Users providing their own power supply should ensure that it delivers 7.5–30 V DC at 
500 mA. The voltage regulators will get warm while in use.

• Regulated Power Supply—The raw DC voltage provided at the POWER IN power-
input jack is routed to a 5 V switching voltage regulator, then to a separate 3.3 V linear 
regulator. The regulators provide stable power to the RCM3700 module and the Proto-
typing Board.

• Power LED—The power LED lights whenever power is connected to the Prototyping 
Board.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the 
RCM3700’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PF4 and PB7 pins of the RCM3700 module and may be read as inputs by 
sample applications.

Two LEDs are connected to the PF6 and PF7 pins of the RCM3700 module, and may 
be driven as output indicators by sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation 
of through-hole components. +3.3 V, +5 V, and Ground buses run at both edges of this 
area. Several areas for surface-mount devices are also available. (Note that there are 
SMT device pads on both top and bottom of the Prototyping Board.) Each SMT pad is 
connected to a hole designed to accept a 30 AWG solid wire or wire-wrap wire.

• LCD/Keypad Module—Rabbit Semiconductor’s LCD/keypad module may be plugged 
in directly to headers LCD1JA, LCD1JB, and LCD1JC. The signals on headers 
LCD1JB and LCD1JC will be available only if the LCD/keypad module is plugged in 
to header LCD1JA. Appendix C provides complete information for mounting and using 
the LCD/keypad module.

• Module Extension Headers—The complete non-analog pin set of the RCM3700 
module is duplicated at header J3. Developers can solder wires directly into the appro-
priate holes, or, for more flexible development, a 2 × 20 header strip with a 0.1" pitch 
can be soldered into place. See Figure B-4 for the header pinouts.

• Analog I/O Shrouded Headers—The complete analog pin set of the RCM3700 
Prototyping Board is available on shrouded headers J8 and J9. See Figure B-4 for the 
header pinouts.
User’s Manual 91



R
C

M
37

00
• RS-232—Three 3-wire serial ports or one 5-wire RS-232 serial port and one 3-wire 
serial port are available on the Prototyping Board at header J2. A jumper on header JP2 
is used to select the drivers for Serial Port E, which can be set either as a 3-wire RS-232 
serial port or as an RS-485 serial port. Serial Ports C and D are not available while the 
IrDA transceiver is in use.

A 10-pin 0.1-inch spacing header strip is installed at J2 allows you to connect a ribbon 
cable that leads to a standard DE-9 serial connector.

• RS-485—One RS-485 serial port is available on the Prototyping Board at shrouded 
header J1. A 3-pin shrouded header is installed at J1. A jumper on header JP2 enables 
the RS-485 output for Serial Port E.

• IrDA—An infrared transceiver is included on the Prototyping Board, and is capable of 
handling link distances up to 1.5 m. The IrDA uses Serial Port F—Serial Ports C and D 
are unavailable while Serial Port F is in use.

• Backup Battery—A 2032 lithium-ion battery rated at 3.0 V, 220 mA·h, provides 
battery backup for the RCM3700 SRAM and real-time clock.
92 RabbitCore RCM3700



R
C

M
37

00
B.1.2  Mechanical Dimensions and Layout

Figure B-2 shows the mechanical dimensions and layout for the RCM3700 Prototyping Board.

Figure B-2.  RCM3700 Prototyping Board Dimensions

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

$6*!
�($*�

#6
*!

�(
(#
�

$6(!
�(**�

!6"!
�*� !6"!

�*�

#6
(!

�(
!#

�
!6
"! �*
�

!6"!
�*�
User’s Manual 93



R
C

M
37

00
Table B-1 lists the electrical, mechanical, and environmental specifications for the 
RCM3700 Prototyping Board.

B.1.3  Power Supply

The RCM3700 requires a regulated 4.75 V to 5.25 V DC power source to operate. 
Depending on the amount of current required by the application, different regulators can 
be used to supply this voltage.

The RCM3700 Prototyping Board has an onboard +5 V switching power regulator from 
which a +3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available 
on the RCM3700 Prototyping Board.

The RCM3700 Prototyping Board itself is protected against reverse polarity by a Shottky 
diode at D2 as shown in Figure B-3. 

Figure B-3.  RCM3700 Prototyping Board Power Supply

Table B-1.  RCM3700 Prototyping Board Specifications

Parameter Specification

Board Size 4.50" × 6.50" × 0.75" (114 mm × 165 mm × 19 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 7.5 V to 30 V DC

Maximum Current Draw
(including user-added circuits)

800 mA max. for +3.3 V supply,
1 A total +3.3 V and +5 V combined

A/D Converter

8-channel ADS7870 with programmable gain configurable for 
11-bit single-ended, 12-bit differential, and 4–20 mA inputs
• Input impedance 6–7 MΩ
• A/D conversion time (including 120 µs raw count and 

Dynamic C) 180 µs

IrDA Transceiver HSDL-3602, link distances up to 1.5 m

Prototyping Area 2.5" × 3" (64 mm × 76 mm) throughhole, 0.1" spacing, 
additional space for SMT components

Standoffs/Spacers 5, accept 4-40 × 1/2 screws

 �	������5��
���1 ����

�
�
5
�
�

�	

/#

(!�H2

 7(((+
1(

�)6)��

)

(

"

(

"

) (	*.(-

�"

#+�H2 ))!�H2

�*��

 (

'(-
))!�H8

�(
(	*.(-

�5��'8�	����5������1 ����

�'�	
1"

 7"*+*

(!�H2
94 RabbitCore RCM3700



R
C

M
37

00
B.1.4  Using the RCM3700 Prototyping Board

The RCM3700 Prototyping Board is actually both a demonstration board and a prototyp-
ing board. As a demonstration board, it can be used to demonstrate the functionality of the 
RCM3700 right out of the box without any modifications.

Figure B-4 shows the RCM3700 Prototyping Board pinouts.

Figure B-4.  RCM3700 Prototyping Board Pinout

&'

�
	
�

�
,�

�
,� �
,�

�
	
�

�
	
�

�
,'

�
,'

�
,�

&8

&9

&!

�	�

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

�')���)

�'"3�,'

��#

��!

��$3�,�

��*

�	�

�����

�%*

�%)

��!

��"

��#

��$

�%!

����

�*��

�2#

�2$

�'(���"

�'!3�,�

��*

��(

��+3�,�

��#

�%��

& 

& 

�
�
G#
.*

0
�
	
�

�
�
G#
.*

�

�	� !""
.��#������

�������

��#' '

&:
,���������

�
�
�
2

'
�
	
�
�
�
�

�
	
�
 �

�
3�

	
�

�
8
�
�
7
3�
	
+

�
�
'
3�
	
$

�
�
'
3�
	
*

�
�
'
3�
	
#

�
�
'
3�
	
)

�
�
'
3�
	
"

�
�
'
3�
	
(

�
8
�
�
7
3�
	
!

�
	
�
 �

�
3�

	
�

������
�5*

��#0:1
User’s Manual 95



R
C

M
37

00
The RCM3700 Prototyping Board comes with the basic components necessary to demon-
strate the operation of the RCM3700. Two LEDs (DS1 and DS2) are connected to PF6 and 
PF7, and two switches (S1 and S2) are connected to PF4 and PB7 to demonstrate the inter-
face to the Rabbit 3000 microprocessor. Reset switch S3 is the hardware reset for the 
RCM3700.

The RCM3700 Prototyping Board provides the user with RCM3700 connection points 
brought out conveniently to labeled points at header J3 on the RCM3700 Prototyping Board. 
Although header J3 is unstuffed, a 2 × 20 header is included in the bag of parts. RS-485 sig-
nals are available on shrouded header J1, and RS-232 signals (Serial Ports C, D, and E) are 
available on header J2. A header strip at J2 allows you to connect a ribbon cable. A shrouded 
header connector and wiring harness are included with the RCM3700 Development Kit parts 
to help you access the RS-485 signals on shrouded header J1.

There is a 2.5" × 3" through-hole prototyping space available on the RCM3700 Prototyping 
Board. The holes in the prototyping area are spaced at 0.1" (2.5 mm). +3.3 V, +5 V, and 
GND traces run along both edges of the prototyping area for easy access. Small to medium 
circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire between the 
prototyping area, the +3.3 V, +5 V, and GND traces, and the surrounding area where sur-
face-mount components may be installed. Small holes are provided around the surface-
mounted components that may be installed around the prototyping area.

B.1.4.1  Adding Other Components

There are two sets of pads for 28-pin devices that can be used for surface-mount prototyp-
ing SOIC devices. (Although the adjacent sets of pads could accommodate up to a 56-pin 
device, they do not allow for the overlap between two 28-pin devices.) There are also pads 
that can be used for SMT resistors and capacitors in an 0805 SMT package. Each compo-
nent has every one of its pin pads connected to a hole in which a 30 AWG wire can be sol-
dered (standard wire-wrap wire can be soldered in for point-to-point wiring on the 
RCM3700 Prototyping Board). Because the traces are very thin, carefully determine 
which set of holes is connected to which surface-mount pad.
96 RabbitCore RCM3700



R
C

M
37

00
B.1.5  Analog Features

The RCM3700 Prototyping Board has an onboard ADS7870 A/D converter to demon-
strate the interface capabilities of the Rabbit 3000. The A/D converter multiplexes con-
verted signals from eight single-ended or three differential inputs to alternate Serial Port B 
on the Rabbit 3000 (Parallel Port pins PD4 and PD5).

B.1.5.1  A/D Converter Inputs

Figure B-5 shows a pair of A/D converter input circuits. The resistors form an approxi-
mately 10:1 attenuator, and the capacitor filters noise pulses from the A/D converter input.

Figure B-5.  A/D Converter Inputs

The A/D converter chip can make either single-ended or differential measurements 
depending on the value of the opmode parameter in the software function call. Adjacent 
A/D converter inputs can be paired to make differential measurements. The default setup 
on the Prototyping Board is to measure only positive voltages for the ranges listed in 
Table B-2.

(+.���
��'3�	!

��	�

���

��'3�	(

���2

(+.���

(��2

"!
��
�

�;	

"!
��
�

(��2

<����	�������

/�+
User’s Manual 97



R
C

M
37

00
Other possible ranges are possible by physically changing the resistor values that make up 
the attenuator circuit.

It is also possible to read a negative voltage on ADC_IN0 to ADC_IN5 by moving the 
jumper (see Figure B-5) on header JP7, JP6, or JP5 associated with the A/D converter 
input from analog ground to VREF, the reference voltage generated and buffered by the 
A/D converter. Adjacent input channels are paired so that moving a particular jumper 
changes both of the paired channels. At the present time Rabbit Semiconductor does not 
offer the software drivers to work with single-ended negative voltages, but the differential 
mode described below may be used to measure negative voltages.

NOTE: THERM_IN7 was configured to illustrate the use of a thermistor with the sample 
program, and so is not available for use as a differential input. There is also no resistor 
attenuator for THERM_IN7, so its input voltage range is limited.

Differential measurements require two channels. As the name differential implies, the dif-
ference in voltage between the two adjacent channels is measured rather than the differ-
ence between the input and analog ground. Voltage measurements taken in differential 
mode have a resolution of 12 bits, with the 12th bit indicating whether the difference is 
positive or negative.

The A/D converter chip can only accept positive voltages. Both differential inputs must be 
referenced to analog ground, and both inputs must be positive with respect to analog 
ground. Table B-3 provides the differential voltage ranges for this setup.

Table B-2.  Positive A/D Converter Input Voltage Ranges

Min. Voltage
(V)

Max. Voltage
(V)

Amplifier
Gain

mV per Count

0.0 +20.0 1 10

0.0 +10.0 2 5

0.0 +5.0 4 2.5

0.0 +4.0 5 2.0

0.0 +2.5 8 1.25

0.0 +2.0 10 1.0

0.0 +1.25 16 0.625

0.0 +1.0 20 0.500
98 RabbitCore RCM3700



R
C

M
37

00
The A/D converter inputs can also be used with 4–20 mA current sources by measuring the 
resulting analog voltage drop across 249 Ω 1% precision resistors placed between the ana-
log input and analog ground for ADC_IN3 to ADC_IN6. Be sure to reconfigure the 
jumper positions on header JP8 as shown in Section B.1.8 using the slip-on jumpers 
included with the spare parts in the Development Kit.

B.1.5.2  Thermistor Input

Analog input THERM_IN7 on the Prototyping Board was designed specifically for use 
with a thermistor in conjunction with the THERMISTOR.C sample program, which demon-
strates how to use analog input THERM_IN7 to calculate temperature for display to the 
Dynamic C STDIO window. The sample program is targeted specifically for the thermistor 
included with the Development Kit with R0 @ 25°C = 3 kΩ and β 25/85 = 3965. Be sure 
to use the applicable R0 and β values for your thermistor if you use another thermistor. 
Install the thermistor at location J7, which is shown in Figure B-4.

Figure B-6.  RCM3700 Prototyping Board Thermistor Input

Table B-3.  Differential Voltage Ranges

Min. Differential 
Voltage

(V)

Max. Differential 
Voltage

(V)

Amplifier
Gain

mV per Count

0 ±20.0 x1 10

0 ±10.0 x2 5

0 ±5.0 x4 2.5

0 ±4.0 x5 2.0

0 ±2.5 x8 1.25

0 ±2.0 x10 1.00

0 ±1.25 x16 0.625

0 ±1.0 x20 0.500

��'

(���

�;	�8��73�	+

�	� ��3�	�

/+

���2

,���������
User’s Manual 99



R
C

M
37

00
B.1.5.3  Other A/D Converter Features

The A/D converter’s internal reference voltage is software-configurable for 1.15 V, 2.048 V, 
or 2.5 V using the #define AD_OSC_ENABLE macro in the Dynamic C RCM37xx.LIB 
library. The scaling circuitry on the Prototyping Board and the sample programs are 
optimized for an internal reference voltage of 2.048 V. This internal reference voltage is 
available on pin 3 of shrouded header J8 as VREF, and allows you to convert analog input 
voltages that are negative with respect to analog ground.

NOTE: The amplifier inside the A/D converter’s internal voltage reference circuit has a 
very limited output-current capability. The internal buffer can source up to 20 mA and 
sink only up to 20 µA. A separate buffer amplifier at U7 supplies the load current.

The A/D converter’s CONVERT pin is available on pin 2 of shrouded header J8, and can 
be used as a hardware means of forcing the A/D converter to start a conversion cycle. The 
CONVERT signal is an edge-triggered event and has a hold time of two CCLK periods for 
debounce.

A conversion is started by an active (rising) edge on the CONVERT pin. The CONVERT 
pin must stay low for at least two CCLK periods before going high for at least two CCLK 
periods. Figure B-7 shows the timing of a conversion start. The double falling arrow on 
CCLK indicates the actual start of the conversion cycle.

Figure B-7.  Timing Diagram for Conversion Start Using CONVERT Pin

��-�

+=�>

��?@

'
�F����
��������
100 RabbitCore RCM3700



R
C

M
37

00
B.1.5.4  A/D Converter Calibration

To get the best results from the A/D converter, it is necessary to calibrate each mode (sin-
gle-ended, differential, and current) for each of its gains. It is imperative that you calibrate 
each of the A/D converter inputs in the same manner as they are to be used in the applica-
tion. For example, if you will be performing floating differential measurements or differ-
ential measurements using a common analog ground, then calibrate the A/D converter in 
the corresponding manner. The calibration must be done with the attenuator reference 
selection jumper in the desired position (see Figure B-5). If a calibration is performed and 
the jumper is subsequently moved, the corresponding input(s) must be recalibrated. The 
calibration table in software only holds calibration constants based on mode, channel, and 
gain. Other factors affecting the calibration must be taken into account by calibrating 
using the same mode and gain setup as in the intended use.

Sample programs are provided to illustrate how to read and calibrate the various A/D 
inputs for the three operating modes.

These sample programs are found in the Dynamic C SAMPLES\RCM3700\ADC subdirec-
tory. See Section 3.2.3 for more information on these sample programs and how to use 
them.

Mode Read Calibrate

Single-Ended, one channel — AD_CALSE_CH.C

Single-Ended, all channels AD_RDSE_ALL.C AD_CALSE_ALL.C

Milliamp, one channel AD_RDMA_CH.C AD_CALMA_CH.C

Differential, analog ground AD_RDDIFF_CH.C AD_CALDIFF_CH.C
User’s Manual 101



R
C

M
37

00
B.1.6  Serial Communication

The RCM3700 Prototyping Board allows you to access five of the serial ports from the 
RCM3700 module. Table B-4 summarizes the configuration options.

Serial Port E is configured in hardware for RS-232 or RS-485 via jumpers on header JP2 
as shown in Section B.1.8. Serial Port F is configured in software for the IrDA transceiver 
in lieu of Serial Ports C and D.

Table B-4.  RCM3700 Prototyping Board Serial Port Configurations

Serial Port Signal Header Configured via 
Header Default Use Alternate Use

C J2 JP2 RS-232 —

D J2 JP2 RS-232 —

E J1, J2 JP1, JP2 RS-485 (J1) RS-232 (J2)
102 RabbitCore RCM3700



R
C

M
37

00
B.1.6.1  RS-232

RS-232 serial communication on the RCM3700 Prototyping Board is supported by an 
RS-232 transceiver installed at U4. This transceiver provides the voltage output, slew rate, 
and input voltage immunity required to meet the RS-232 serial communication protocol. 
Basically, the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that 
the polarity is reversed in an RS-232 circuit so that a +5 V output becomes approximately 
-10 V and 0 V is output as +10 V. The RS-232 transceiver also provides the proper line 
loading for reliable communication.

RS-232 can be used effectively at the RCM3700 module’s maximum baud rate for distances 
of up to 15 m.

RS-232 flow control on an RS-232 port is initiated in software using the serXflowcon-
trolOn function call from RS232.LIB, where X is the serial port (C or D). The locations 
of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PCDR).

SERA_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PCDRShadow).

SERA_RTS_BIT—The bit number for the RTS line.

SERA_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERA_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports C and D is illustrated in the 
following sample code.

#define CINBUFSIZE  15   // set size of circular buffers in bytes
#define COUTBUFSIZE 15

#define DINBUFSIZE  15
#define DOUTBUFSIZE 15

#define MYBAUD 115200   // set baud rate
#endif

main(){
    serCopen(_MYBAUD);   // open Serial Ports C and D
    serDopen(_MYBAUD);
    serCwrFlush();       // flush their input and transmit buffers
    serCrdFlush();
    serDwrFlush();
    serDrdFlush();
    serCclose(_MYBAUD);  // close Serial Ports C and D
    serDclose(_MYBAUD);
}

User’s Manual 103



R
C

M
37

00
B.1.6.2  RS-485

The RCM3700 Prototyping Board has one RS-485 serial channel, which is connected to 
the Rabbit 3000 Serial Port E through an RS-485 transceiver. The half-duplex communi-
cation uses an output from PF5 on the Rabbit 3000 to control the transmit enable on the 
communication line. Using this scheme a strict master/slave relationship must exist 
between devices to insure that no two devices attempt to drive the bus simultaneously.

Serial Port E is configured in software for RS-485 as follows.

#define ser485open serEopen
#define ser485close serEclose
#define ser485wrFlush serEwrFlush
#define ser485rdFlush serErdFlush
#define ser485putc serEputc
#define ser485getc serEgetc

#define EINBUFSIZE  15
#define EOUTBUFSIZE 15

The configuration shown above is based on circular buffers. RS-485 configuration may 
also be done using functions from the PACKET.LIB library.

The RCM3700 Prototyping Boards with RCM3700 modules installed can be used in an 
RS-485 multidrop network spanning up to 1200 m (4000 ft), and there can be as many as 
32 attached devices. Connect the 485+ to 485+ and 485– to 485– using single twisted-pair 
wires as shown in Figure B-8. Note that a common ground is recommended.

Figure B-8.  RCM3700 Multidrop Network

�
�
G#
.*

0

�
�
#.

*�

�
	
�

�
�
G#
.*

0

�
�
#.

*�

�
	
�

�
�
G#
.*

0

�
�
#.

*�

�
	
�

104 RabbitCore RCM3700



R
C

M
37

00
The RCM3700 Prototyping Board comes with a 220 Ω termination resistor and two 681 Ω 
bias resistors installed and enabled with jumpers across pins 1–2 and 5–6 on header JP1, 
as shown in Figure B-9.

Figure B-9.  RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled 
only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards 
whose termination resistors are not enabled may be stored across pins 1–3 and 4–6 of 
header JP1.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�
"#

�
"

'
(.

'
)#

��(��" �
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1('"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�((')+

�#�*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+'#-

 "

 (

'(#

'("'""

1
.'
")

9)'*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

/�(

#

)

"

(

$

*

=������
;������

�+
$.(��

�-
""!��

�.
$.(��

#.*�

#.*0

$

+

������
����	�


���


���

1) /�(
$ *

" (

����
User’s Manual 105



R
C

M
37

00
B.1.7  Other Prototyping Board Modules

An optional LCD/keypad module is available that can be mounted on the RCM3700 
Prototyping Board. The signals on headers LCD1JB and LCD1JC will be available only if 
the LCD/keypad module is installed. Refer to Appendix C, “LCD/Keypad Module,” for 
complete information.

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the 
Prototyping Board. Do not use S2 when the LCD/keypad module is installed.
106 RabbitCore RCM3700



R
C

M
37

00
B.1.8  Jumper Configurations

Figure B-10 shows the header locations used to configure the various RCM3700 Prototyp-
ing Board options via jumpers. 

Figure B-10.  Location of RCM3700 Prototyping Board Configurable Positions

/�(

/�"

/�#

/�.
/�* /�$ /�+

%������
User’s Manual 107



R
C

M
37

00
Table B-5 lists the configuration options using jumpers.

Table B-5.  RCM3700 Prototyping Board Jumper Configurations

Header Description Pins Connected Factory 
Default

JP1 RS-485 Bias and Termination 
Resistors

1–2
5–6

Bias and termination resistors 
connected ×

1–3
4–6

Bias and termination resistors not 
connected (parking position for 
jumpers)

JP2 RS-232/RS-485 on Serial Port E

1–3
2–4 RS-232

3–5
4–6 RS-485 ×

JP4 A/D Converter Outputs

1 PIO_0 n.c.

2 PIO_1 n.c.

3 PIO_2 n.c.

4 PIO_3 n.c.

JP5 ADC_IN4–ADC_IN5
1–2 Tied to VREF

2–3 Tied to analog ground ×

JP6 ADC_IN2–ADC_IN3
1–2 Tied to VREF

2–3 Tied to analog ground ×

JP7 ADC_IN0–ADC_IN1
1–2 Tied to VREF

2–3 Tied to analog ground ×

JP8 Analog Voltage/4–20 mA 
Options

1–2 Connect for 4–20 mA option on ADC_IN3 n.c.

3–4 Connect for 4–20 mA option on ADC_IN4 n.c.

5–6 Connect for 4–20 mA option on ADC_IN5 n.c.

7–8 Connect for 4–20 mA option on ADC_IN6 n.c.
108 RabbitCore RCM3700



R
C

M
37

00
B.1.9  Use of Rabbit 3000 Parallel Ports

Table B-6 lists the Rabbit 3000 parallel ports and their use for the RCM3700 Prototyping 
Board.

Table B-6.  RCM3700 Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

PA0–PA7 Output External ID0–ID7, LCD/keypad module High (core module)

PB0 Output CLKB, A/D Converter SCLK High (SCLK set by driver)

PB1 Output CLKA Programming Port High (core module)
(when not driven by CLKA)

PB2–PB5 Output External IA0–IA3, LCD/keypad module High

PB6 Output IA4, not used High (core module)

PB7 Output External IA5, Switch S2 High

PC0 Output TXD RS-232
Serial Port D

High (set by drivers)

PC1 Input RXD RS-232 Pulled up (core module)

PC2 Output TXC RS-232
Serial Port C

High (set by drivers)

PC3 Input RXC RS-232 Pulled up (core module)

PC4 Output TXB Serial Flash
Serial Port B

High (set by drivers)

PC5 Input RXB Serial Flash Pulled up (core module)

PC6 Output TXA Programming Port
Serial Port A

High (when not driven)

PC7 Input RXA Programming Port Pulled up (core module)

PD0 Output Ethernet RSTDRV Pulled up (core module)

PD1 Input Ethernet BD5 (EESK) Set by Ethernet

PD2 Input Ethernet BD6 (EEDI) Set by Ethernet

PD3 Input Ethernet BD6 (EEDO) Set by Ethernet

PD4 Output ATXB, A/D converter SDI High (set by driver)

PD5 Input ARXB, A/D converter SDO Pulled up (core module)

PD6–PD7 Input Not used Pulled up (core module)

PE0 Output IrDA MD0 Pulled up (Proto Board)

PE1 Output IrDA MD1 Pulled down (Proto Board)

PE2 Output Ethernet AEN High (driven by Ethernet)

PE3 Input Not used Pulled up (core module)

PE4 Output IrDA FIR_SEL Low (slow baud rate)

PE5 Output RS-232 enable Pulled up (Proto Board)
User’s Manual 109



R
C

M
37

00
PE6 Output Serial Flash Select Pulled up (core module)

PE7 Output LCD/keypad module BUFEN Pulled up (Proto Board)

PF0 Output A/D converter select line Pulled up (Proto Board)

PF1 Input A/D converter busy Pulled down (Proto Board)

PF2–PF3 Input Not used Pulled up (core module)

PF4 Input Switch S1 Pulled up (Proto Board)

PF5 Output RS-485 Tx enable Pulled down (Proto Board)

PF6 Output LED DS1 High

PF7 Output LED DS2 High

PG0–PG1 Input Not used Pulled up (Proto Board)

PG2 Input TXF IrDA
Serial Port F

Pulled up (core module)—
tied to PC1

PG3 Input RXF IrDA Pulled up (core module)—
tied to PC3

PG4–PG5 Input Not used Pulled up (Proto Board)

PG6 Output TXE RS-485 or RS-232
Serial Port E

High (set by drivers)

PG7 Input RXE RS-485 or RS-232 Pulled up (set by drivers)

Table B-6.  RCM3700 Prototyping Board Use of Rabbit 3000 Parallel Ports 

Port I/O Use Initial State
110 RabbitCore RCM3700



R
C

M
37

20
B.2  RCM3720 Prototyping Board
The RCM3720 Prototyping Board included in the Ethernet Connection Kit makes it easy 
to connect an RCM3720 module to a power supply and a PC workstation for development. 
It also provides some basic I/O peripherals (LEDs and switches), as well as a prototyping 
area for more advanced hardware development. An optional RS-232 chip can be added for 
RS-232 serial communication.

For the most basic level of evaluation and development, the RCM3720 Prototyping Board 
can be used without modification.

As you progress to more sophisticated experimentation and hardware development, modi-
fications and additions can be made to the board without modifying or damaging the 
RCM3720 module itself.

The RCM3720 Prototyping Board is shown below in Figure B-11, with its main features 
identified.

Figure B-11.  RCM3720 Prototyping Board

�
'
!

�
2
$

�
2
#

�
%
*

�
	
�

�
	
�

��
�
�

�
�
#

���
5
�

�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
	
�

�
	
�

��
�
�

�
�
#

���
�

�

�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
(

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�*
�

��

�

�
�
*

���
�	

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
'
!

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/# /)

/(
/$1"

'+
'"

'- �(

'(

'(#
1)

'
((

'("

'()�'(!

�$

/"%
�
(

�'7)+"!�������9��	��%����

'4(

'
4
"

�4+

�4.

�4-

�4(!

�4((

�4("

�4()

�4(#

�4(*

�4($

�
4
*

'4(#

'4() �
4
$

14-

'4("

'4(!

'4*'4)

'
4
$

14+

'
4
#

�
4
(

'4- �
4
"

14.

�
4
#

'4((�
4
)

14)

14"

14(

'
4
.

'4+

/*

�*�

�	�

�
2
+

�
)

�
"

�
"

1(

'.

'*

'#

'$

')

�#

�
(

�
)

�
2
#

�*

�
%
+

�
"

�
(

�
��

�
�

��
5
��

�
2
$

�
�
"

�
�
(

��)

(
)

#
"

( )

" #

(

" #

)

�
2
+�
�
2
$�
�
%
+�
�
2
#

�
�
"�
�
�
(�

��
��

��
�

�
4
'
��
4
'

�
4
�
��
4
�
��
��
��

	
�

�
4
'
��
4
'

�
4
�
��
4
�
��
��
��

	
�

/+

�	�

��	

�	�
/.

�'!3�4�

�'"3�4'

�'(�
��"3�4�
�')�
��)3�4'

�
	
�

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

�
+

�.

�
?��
��=>�

�
?��� ��

�������?���

1���
 ���

�'7)+"!�7
;>��
�,�����
��8��;��

�'7)+"!
7
;>��

'
�����
�

1���
�?�����

�7����
�
��=��<
����

��
><G8
��
��
�
��=��<�����

'*)

��G")"�8��;��

%���>=
%������

�*�����;��	�
%>���

��
><G8
��
��G")"�'�=

����F��>���>EE�;�

�
���<�
��<>���
�

8��������

�>�E���G7
>��
��G")"�'�=
User’s Manual 111



R
C

M
37

20
B.2.1  Features

• Power Connection—A 3-pin header is provided for connection to the power supply. 
Note that the 3-pin header is symmetrical, with both outer pins connected to ground and 
the center pin connected to the raw DCIN input. The cable of the AC adapter provided 
with the North American version of the Ethernet Connection Kit ends in a plug that 
connects to the power-supply header, and can be connected to the 3-pin header in either 
orientation.

Users providing their own power supply should ensure that it delivers 7.5–15 V DC at 
200 mA. The voltage regulator will get warm while in use.

• Linear Power Supply—The raw DC voltage provided at the POWER IN power-input 
jack is routed to a 5 V linear voltage regulator. The regulator provides stable power to 
the RCM3720 module and the Prototyping Board.

• Power LED—The power LED lights whenever power is connected to the Prototyping 
Board.

• Reset Switch—A momentary-contact, normally open switch is connected directly to the 
RCM3720’s /RESET_IN pin. Pressing the switch forces a hardware reset of the system.

• I/O Switches and LEDs—Two momentary-contact, normally open switches are con-
nected to the PF4 and PB7 pins of the RCM3720 module and may be read as inputs by 
sample applications.

Two LEDs are connected to the PF6 and PF7 pins of the RCM3720 module, and may 
be driven as output indicators by sample applications.

• Prototyping Area—A generous prototyping area has been provided for the installation 
of through-hole components. +5 V and ground buses run along the bottom edge of this 
area. Several areas for surface-mount devices are also available. (Note that there are 
SMT device pads on both top and bottom of the Prototyping Board.) Each SMT pad is 
connected to a hole designed to accept a 30 AWG solid wire or wire-wrap wire.

• Module Extension Headers—The complete pin set of the RCM3720 module is dupli-
cated at header J2. Developers can solder wires directly into the appropriate holes, or, 
for more flexible development, a 2 × 20 header strip with a 0.1" pitch can be soldered 
into place. See Figure B-14 for the header pinouts.

• RS-232—The RS-232 chip brings out Serial Ports C and D to the header J7 area on the 
RCM3720 Prototyping Board. A 2 × 5 header strip with a 0.1" pitch is installed at J7 to 
allow you to connect a ribbon cable that leads to a standard DB9 serial connector.

Two 3-wire serial ports or one 5-wire RS-232 serial port are available at header J7.

• Backup Battery—A 2032 lithium-ion battery rated at 3.0 V, 220 mA·h, provides 
battery backup for the RCM3720 SRAM and real-time clock.
112 RabbitCore RCM3700



R
C

M
37

20
B.2.2  Mechanical Dimensions and Layout

Figure B-12 shows the mechanical dimensions and layout for the RCM3720 Prototyping Board.

Figure B-12.  RCM3720 Prototyping Board Dimensions

�
'
!

�
2
$

�
2
#

�
%
*

�
	
�

�
	
�

��
�
�

�
�
#

���
5
�

�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
	
�

�
	
�

��
�
�

�
�
#

���
�

�

�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
(

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�*
�

��

�

�
�
*

���
�	

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
'
!

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/# /)

/(
/$1"

'+
'"

'- �(

'(

'(#
1)

'
((

'("

'()�'(!

�$

/"%
�
(

�'7)+"!�������9��	��%����

'4(

'
4
"

�4+

�4.

�4-

�4(!

�4((

�4("

�4()

�4(#

�4(*

�4($

�
4
*

'4(#

'4() �
4
$

14-

'4("

'4(!

'4*'4)

'
4
$

14+

'
4
#

�
4
(

'4- �
4
"

14.

�
4
#

'4((�
4
)

14)

14"

14(

'
4
.

'4+

/*

�*�

�	�

�
2
+

�
)

�
"

�
"

1(

'.

'*

'#

'$

')

�#

�
(

�
)

�
2
#

�*

�
%
+

�
"

�
(

�
��

�
�

��
5
��

�
2
$

�
�
"

�
�
(

��)

(
)

#
"

( )

" #

(

" #

)

�
2
+�
�
2
$�
�
%
+�
�
2
#

�
�
"�
�
�
(�

��
��

��
�

�
4
'
��
4
'

�
4
�
��
4
�
��
��
��

	
�

�
4
'
��
4
'

�
4
�
��
4
�
��
��
��

	
�

/+

�	�

��	

�	�
/.

�'!3�4�

�'"3�4'

�'(�
��"3�4�
�')�
��)3�4'

�
	
�

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

�
+

�.

#6#!!
�(("�

)6
.*
$

�-
.�

#6(!!
�(!#�

!6(*
�)6.� !6(*

�)6.�

)6
**
$

�-
!�

!6
(*

�)
6.
�

!6(*
�)6.�
User’s Manual 113



R
C

M
37

20
Table B-1 lists the electrical, mechanical, and environmental specifications for the 
RCM3720 Prototyping Board.

B.2.3  Power Supply

The RCM3720 requires a regulated 4.75 V to 5.25 V DC power source to operate. 
Depending on the amount of current required by the application, different regulators can 
be used to supply this voltage.

The RCM3720 Prototyping Board has an onboard +5 V linear power regulator.

The RCM3720 Prototyping Board itself is protected against reverse polarity by a Shottky 
diode at D1 as shown in Figure B-13. 

Figure B-13.  RCM3720 Prototyping Board Power Supply

Table B-7.  RCM3720 Prototyping Board Specifications

Parameter Specification

Board Size 3.856" × 4.400" × 0.37" (114 mm × 165 mm × 9 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 7.5 V to 15 V DC

Maximum Current Draw
(including user-added circuits) 225 mA max.

Prototyping Area 1.8" × 2.4" (46 mm × 61 mm) throughhole, 0.1" spacing, 
additional space for SMT components

Mounting Holes 4, 0.156" (4 mm) diameter, accept 6-32 screws and #6 spacers

�
�
5
�
�

�	

/(

(!�H2

 7()#!*G*
1"(

"

)

(

"

) (	*.(-

�(

#+�H2 ))!�H2

�*��

'(

 �	������5������1 ����

�'�	

(!�H2
'- '" '+
114 RabbitCore RCM3700



R
C

M
37

20
B.2.4  Using the RCM3720 Prototyping Board

The RCM3720 Prototyping Board is actually both a demonstration board and a prototyp-
ing board. As a demonstration board, it can be used to demonstrate the functionality of the 
RCM3720 right out of the box without any modifications.

Figure B-14 shows the RCM3720 Prototyping Board pinouts.

Figure B-14.  RCM3720 Prototyping Board Pinout

&'

�	�

�,�
�,�

�
	
�

�
	
�

��
�
�

�
�
#

���
�

�
�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
(

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�*
�

��

�

�
�
*

���
�	

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
'
!

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

&!

�	� !'"
�������

��#' '

�,'
�,'
User’s Manual 115



R
C

M
37

20
The RCM3720 Prototyping Board comes with the basic components necessary to demon-
strate the operation of the RCM3720. Two LEDs (DS1 and DS2) are connected to PF6 and 
PF7, and two switches (S1 and S2) are connected to PF4 and PB7 to demonstrate the inter-
face to the Rabbit 3000 microprocessor. Reset switch S3 is the hardware reset for the 
RCM3720.

The RCM3720 Prototyping Board provides the user with RCM3720 connection points 
brought out conveniently to labeled points at header J2 on the RCM3720 Prototyping 
Board. Although header J2 is unstuffed, a 2 × 20 header strip with a 0.1" pitch can be 
installed. The 2 × 20 header (part number 405-0016) can be purchased through Rabbit 
Semiconductor’s online store.

To maximize the availability of resources, the demonstration hardware (LEDs and 
switches) on the Prototyping Board may be disconnected. This is done by cutting the 
traces seen within the silkscreen outline for header J4 on the bottom side of the RCM3720 
Prototyping Board. Figure B-15 shows the four traces where cuts should be made. An 
exacto knife or high-speed precision grinder tool like a Dremel® tool would work nicely 
to cut the traces. Alternatively, if safety is a major concern, a small standard screwdriver 
may be carefully and forcefully used to wipe through the PCB traces.

Figure B-15.  Where to Cut Traces to Permanently Disable 
Demonstration Hardware on RCM3720 Prototyping Board

�2#

�%+

�2$

�2+

�5(

�5"

��(

��"

�*�

�	�

'1��8���

'>�

'>�

�	� !'"
�����������

�����
�����������
116 RabbitCore RCM3700

http://www.rabbitsemiconductor.com/products/parts/index.shtml


R
C

M
37

20
A 2 × 4 header strip with a 0.1" pitch can be installed at J4, and jumpers across the appro-
priate pins on header J4 can be used to reconnect specific demonstration hardware later if 
needed. Each pin is labeled on the PCB to facilitate placing the jumpers. The jumper posi-
tions are summarized in Table B-8.

B.2.4.1  Prototyping Area

There is a 1.8" × 2.4" through-hole prototyping space available on the RCM3720 Proto-
typing Board. The holes in the prototyping area are spaced at 0.1" (2.5 mm). +5 V and 
ground traces run along the bottom edge of the prototyping area for easy access. Small to 
medium circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire 
between the prototyping area, the +5 V, and ground traces, and the surrounding area where 
surface-mount components may be installed. Small holes are provided around the surface-
mounted components that may be installed around the prototyping area.

There are six sets of pads (three on each side) for 16-pin devices that can be used to surface-
mount SOIC devices. There are also pads that can be used for SMT resistors and capaci-
tors in an 0805 SMT package. Each component has every one of its pin pads connected to 
a hole in which a 30 AWG wire can be soldered (standard wire-wrap wire can be soldered 
in for point-to-point wiring on the RCM3720 Prototyping Board). Because the traces are 
very thin, carefully determine which set of holes is connected to which surface-mount pad.

Table B-8.  RCM3720 Prototyping Board Jumper Settings

Header J4

Pins Signal Description Demonstration Hardware

1–2 PF4 Switch S1

3–4 PB7 Switch S2

5–6 PF6 LED DS1

7–8 PF7 LED DS2
User’s Manual 117



R
C

M
37

20
B.2.5  Serial Communication

RCM3720 Prototyping Boards sold before 2007 had no RS-232 chip installed, and so no 
RS-232 communication was possible. An optional through-hole RS-232 chip could be 
installed at U1 or a surface-mount RS-232 chip could be installed at U3. Five correspond-
ing through-hole or surface-mount capacitors must also be installed. Figure B-16 shows 
where to install the RS-232 chip and its associated capacitors for the two options.

Figure B-16.  Locations Where to Install RS-232 Chip and Capacitors

NOTE: Only one RS-232 circuit needs to be stuffed.

Rabbit Semiconductor offers the through-hole RS-232 chip and its associated capacitors 
for sale in a subassembly with some other parts (part number 151-0150). Contact your 
Rabbit Semiconductor sales representative or authorized distributor for more information.

RS-232 serial communication on the RCM3720 Prototyping Board is supported by the 
RS-232 transceiver installed at U3. This transceiver provides the voltage output, slew rate, 
and input voltage immunity required to meet the RS-232 serial communication protocol. 
Basically, the chip translates the Rabbit 3000’s signals to RS-232 signal levels. Note that 
the polarity is reversed in an RS-232 circuit so that a +5 V output becomes approximately 
-10 V and 0 V is output as +10 V. The RS-232 transceiver also provides the proper line 
loading for reliable communication.

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

�
'
!

�
2
$

�
2
#

�
%
*

�
	
�

�
	
�

��
�
�

�
�
#

���
5
�

�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
	
�

�
	
�

��
�
�

�
�
#

���
�

�

�
�
+

�
�
(

�
�
*

�
'
)�
�
�
)

�
'
(�
�
�
"

�
2
(

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�*
�

��

�

�
�
*

���
�	

�
�
$

�
�
!

�
�
#

�
�
+

�
'
"

�
'
!

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/#

�2#

�%+

�2$

�2+

�5(

�5"

��(

��"

/)/(

/$1"

'+
'"

'- �(

'(

'(#

1)'
((

'("

'()�'(!

�$

/"

%�(

�'7)+"!�������9��	��%����

'4(

'
4
"

�4+

�4.

�4-

�4(!

�4((

�4("

�4()

�4(#

�4(*

�4($

�
4
*

'4(#

'4() �
4
$

14-

'4("

'4(!

'4*'4)

'
4
$

14+

'
4
#

�
4
(

'4- �
4
"

14.

�
4
#

'4((�
4
)

14)

14"

14(

'
4
.

'4+

/*

�*�

�	�

�
2
+

�
)

�
"

�
"

1(

'.

'*

'#

'$

')

�#

�
( �)

�
2
#

�*

�
%
+

�
"

�
(

�
��

�
�

��
5
��

�
2
$

�
�
"

�
�
(

�
�
) (

)

#
"

( )

" #

(

" #

)

=�

��

��

�A

��

��

>������& 

�������#������*�����
I���")"�'��������=
����DG5
��;�=�����
6�$$!G!(..�

I�E�F��!6(�H2���=����
��
����DG5
��;�=�����
6�)"(G!!!#�

'(#

1)'
((

'("

'()�'(!

")"�
'�

;*�.*,��.�,�??
�*,>�*�,�*.�@

(!
!6(

!6(
!6(

!6(

')��'#��'*��'$��'.

I���")"�'����=
����DG5
��;�=�����
6�$$!G!!!$�

I�E
>��!6(�H2���=����
��
����DG5
��;�=�����
6�)!!G!!!*�

I�
���(!�H2���=����
�
����DG5
��;�=�����
6�))!G!!()�

,������#>����*�����
118 RabbitCore RCM3700



R
C

M
37

20
RS-232 can be used effectively at the RCM3720 module’s maximum baud rate for distances 
of up to 15 m.

The RS-232 chip brings out Serial Ports C and D to header J7 on the RCM3720 Prototyp-
ing Board. A 2 × 5 header with a 0.1" pitch installed at J7 allows you to connect a ribbon 
cable that leads to a standard DB9 serial connector.

Table B-9 summarizes the serial port locations.

These serial ports can be configured in software as either one 5-wire or two 3-wire RS-232 
channels. RS-232 flow control on an RS-232 port is initiated in software using the serX-
flowcontrolOn function call from RS232.LIB, where X is the serial port (C or D). The 
locations of the flow control lines are specified using a set of five macros.

SERX_RTS_PORT—Data register for the parallel port that the RTS line is on (e.g., PCDR).

SERA_RTS_SHADOW—Shadow register for the RTS line's parallel port (e.g., PCDRShadow).

SERA_RTS_BIT—The bit number for the RTS line.

SERA_CTS_PORT—Data register for the parallel port that the CTS line is on (e.g., PCDRShadow).

SERA_CTS_BIT—The bit number for the CTS line.

Standard 3-wire RS-232 communication using Serial Ports C and D is illustrated in the 
following sample code.

#define CINBUFSIZE  15
#define COUTBUFSIZE 15

#define DINBUFSIZE  15
#define DOUTBUFSIZE 15

#define MYBAUD 115200
#endif

main(){
    serCopen(_MYBAUD);
    serDopen(_MYBAUD);
    serCwrFlush();
    serCrdFlush();
    serDwrFlush();
    serDrdFlush();
}

Table B-9.  RCM3720 Prototyping Board Serial Port Locations

Serial Port Signal Header Header Pins

C J7 TxC…6
RxC…4

D J7 TxD…3
RxD…5
User’s Manual 119



R
C

M
37

20
B.2.6  Use of Rabbit 3000 Parallel Ports

Table B-10 lists the Rabbit 3000 parallel ports and their use for the RCM3720 Prototyping 
Board.

Table B-10.  RCM3720 Prototyping Board Use of Rabbit 3000 Parallel Ports

Port I/O Use Initial State

PA0–PA7 Input Not used Pulled up (core module)

PB0 Output CLKB, Serial Flash SCLK High

PB1 Output CLKA Programming Port High
(when not driven by CLKA)

PB2–PB6 Output Not used High

PB7 Input External IA5, Switch S2 Pulled up (Proto Board)

PC0 Output TXD RS-232
Serial Port D

High (set by drivers)

PC1 Input RXD RS-232 Pulled up (core module)

PC2 Output TXC RS-232
Serial Port C

High (set by drivers)

PC3 Input RXC RS-232 Pulled up (core module)

PC4 Output TXB Serial Flash
Serial Port B

High (set by drivers)

PC5 Input RXB Serial Flash Pulled up (core module)

PC6 Output TXA Programming Port
Serial Port A

High (when not driven)

PC7 Input RXA Programming Port Pulled up (core module)

PD0 Output Ethernet RSTDRV Pulled up (core module)

PD1 Input Ethernet BD5 (EESK) Set by Ethernet

PD2 Input Ethernet BD6 (EEDI) Set by Ethernet

PD3 Input Ethernet BD6 (EEDO) Set by Ethernet

PD4–PD5 Output Not used High

PD6–PD7 Input Not used Pulled up (core module)

PE0–PE1 Output Not used High

PE2 Output Ethernet AEN High (driven by Ethernet)

PE3 Input Not used Pulled up (core module)

PE4–PE5 Output Not used High

PE6 Input Serial Flash Select Pulled up (core module)

PE7 Output Not used High

PF0 Output Not used High

PF1 Input Not used Low
120 RabbitCore RCM3700



R
C

M
37

20
PF2–PF3 Input Not used Pulled up (core module)

PF4 Input Switch S1 Pulled up (Proto Board)

PF5 Output Not used High

PF6 Output LED DS1 High

PF7 Output LED DS2 High

PG0–PG1 Output Not used High

PG2 Input Not used Pulled up (core module)—
tied to PC1

PG3 Input Not used Pulled up (core module)—
tied to PC3

PG4–PG7 Output Not used Pulled up (core module)—
tied to PC3

Table B-10.  RCM3720 Prototyping Board Use of Rabbit 3000 Parallel Ports 

Port I/O Use Initial State
User’s Manual 121



122 RabbitCore RCM3700



APPENDIX C.  LCD/KEYPAD MODULE

An optional LCD/keypad is available for the RCM3700 Prototyp-
ing Board. Appendix C describes the LCD/keypad and provides
the software function calls to make full use of the LCD/keypad.

C.1  Specifications
Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water-
resistant bezel—are available for use with the Prototyping Board. They are shown in 
Figure C-1.

Figure C-1.  LCD/Keypad Modules Versions

Only the version without the bezel can mount directly on the Prototyping Board; if you 
have the version with a bezel, you will have to remove the bezel to be able to mount the 
LCD/keypad module on the Prototyping Board. Either version of the LCD/keypad module 
can be installed at a remote location up to 60 cm (24") away. Contact your sales representa-
tive or your authorized Rabbit Semiconductor distributor for further assistance in purchasing 
an LCD/keypad module.

?	;5��������������
User’s Manual 123



Mounting hardware and a 60 cm (24") extension cable are also available for the LCD/keypad 
module through your Rabbit Semiconductor sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the 
LCD/keypad module.

Table C-1.  LCD/Keypad Specifications

Parameter Specification

Board Size 2.60" x 3.00" x 0.75"
(66 mm x 76 mm x 19 mm)

Bezel Size 4.50" × 3.60" × 0.30" 
(114 mm × 91 mm × 7.6 mm)

Temperature Operating Range: 0°C to +50°C
Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections Connects to high-rise header sockets on the RCM3700 Prototyping 
Board

LCD Panel Size 122 x 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs

The LCD/keypad module has 0.1" 
IDC headers at J1, J2, and J3 for 
physical connection to other boards or 
ribbon cables. Figure C-2 shows the 
LCD/keypad module footprint. These 
values are relative to one of the 
mounting holes.

NOTE: All measurements are in 
inches followed by millimeters 
enclosed in parentheses. All dimen-
sions have a manufacturing toler-
ance of ±0.01" (0.25 mm).

Figure C-2.  User Board Footprint for
LCD/Keypad Module

&'

&9

!6"!!
�*6(�

!6(!!
�"6*�

!6*!!
�("6+�

(6#*!
�)$6.�

& 

"6"!!
�**6-�

(6
$!
!

�#
!6
$�

!6
+$
.

�(
-6
*�

!6
$!
+

�(
*6
#�
124 RabbitCore RCM3700



C.2  Contrast Adjustments for All Boards
Starting in 2005, LCD/keypad modules were factory-configured to optimize their contrast 
based on the voltage of the system they would be used in. Be sure to select a KDU3V 
LCD/keypad module for use with the RCM3700 Prototyping Board — these modules 
operate at 3.3 V. You may adjust the contrast using the potentiometer at R2 as shown in   
Figure C-3. LCD/keypad modules configured for 5 V may be used with the 3.3 V 
RCM3700 Prototyping Board, but the backlight will be dim.

Figure C-3.  LCD/Keypad Module Voltage Settings

You can set the contrast on the LCD display of pre-2005 LCD/keypad modules by adjust-
ing the potentiometer at R2 or by setting the voltage for 3.3 V by connecting the jumper 
across pins 3–4 on header J5 as shown in Figure C-3. Only one of these two options is 
available on these LCD/keypad modules.

NOTE: Older LCD/keypad modules that do not have a header at J5 or a contrast adjust-
ment potentiometer at R2 are limited to operate only at 5 V, and will not work with the 
RCM3700 Prototyping Board. The older LCD/keypad modules are no longer being sold.

'
"

�"

�
(

'
)

�" '( �(

'
*

1"

/�( �)
1(

'#

'
(!

'�(

�
$

'()
'("

�
+

�.

�"*

�"$

�(( �() �(# �(! �- �(" �(*

�
(.

:.

�
($

:*

�
"(:"

1*

/"

���� �9
%����

/#

&�(

�
(+ :#

�
"" :$

�
") :+

�
"!

:
) �
(-

1+ '(#

�
"#

'
(*

'
($

1$

1#

'+'-
1)

 '�( '((

�#
�*

'$

/(

:(

/*

'(+ �	(

/*

 �)*!!
"6.��

��8��
)6)��

(

"

)

#

�6�6�J�*��

?	;5��������������&������	�������������

��%�� ������)$��# .�#�
��##��$�%

0��$��,
��*�" $

��

�	
��

	��

���

���

��

�	�	

�

/*
(

"

)

#

�
��
��	


6
�(
!(
G!
*#
(

��������
!�"������
User’s Manual 125



C.3  Keypad Labeling
The keypad may be labeled according to your needs. A template is provided in Figure C-4 
to allow you to design your own keypad label insert.

Figure C-4.  Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared 
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5.  Removing and Inserting Keypad Label

The sample program KEYBASIC.C in the 122x32_1x7 folder in SAMPLES\LCD_KEYPAD 
shows how to reconfigure the keypad for different applications.

(6(!
�".�

"6)*
�$!�

&��=�;���K�������
����;
��������K�>�����=�;������6
126 RabbitCore RCM3700



C.4  Header Pinouts
Figure C-6 shows the pinouts for the LCD/keypad module.

Figure C-6.  LCD/Keypad Module Pinouts 

C.4.1  I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as 
explained in Table C-2.

Table C-2.  LCD/Keypad Module Address Assignment

Address Function

0xE000 Device select base address (/CS)

0xExx0–0xExx7 LCD control

0xExx8 LED enable

0xExx9 Not used

0xExxA 7-key keypad

0xExxB (bits 0–6) 7-LED driver

0xExxB (bit 7) LCD backlight on/off

0xExxC–ExxF Not used

�
%
$%

�
%
#%

�
%
"%

�
%
!%

�
(%

�
)%

�
	
�

 �
�
+

 �
�
*

 �
�
)

 �
�
(

��
�
�

�
'
'

�
%
+%

�
%
*%

�
%
)%

�
%
(%

�
!%

�
"%

�
	
�

�
	
�

 �
�
$

 �
�
#

 �
�
"

�
�
+

�*
%
&
 �

1�

�
	
�

�
	
�

 �
�
$

 �
�
#

 �
�
"

�
�
+

�*
%
&
 �

�
	
�

 �
�
+

 �
�
*

 �
�
)

 �
�
(

��
�
�

�
'
'

1�

�
	
�

�
%
+%

�
%
*%

�
%
)%

�
%
(%

�
!%

�
"%

�
	
�

�
%
$%

�
%
#%

�
%
"%

�
%
!%

�
(%

�
)%

1�
User’s Manual 127



C.5  Install Connectors on Prototyping Board
Before you can use the LCD/keypad module with the RCM3700 Prototyping Board, you 
will need to install connectors to attach the LCD/keypad module to the RCM3700 Proto-
typing Board. These connectors are included with the RCM3700 Development Kit.

First solder the 2 x 13 connector to location LCD1JA on the RCM3700 Prototyping Board 
as shown in Figure C-7.

• If you plan to bezel-mount the LCD/keypad module, continue with the bezel-mounting 
instructions in Section C.7, “Bezel-Mount Installation.”

• If you plan to mount the LCD/keypad module directly on the RCM3700 Prototyping 
Board, solder two additional 2 x 7 connectors at locations LCD1JB and LCD1JC on the 
RCM3700 Prototyping Board. Section C.6, “Mounting LCD/Keypad Module on the 
Prototyping Board,” explains how to mount the LCD/keypad module on the RCM3700 
Prototyping Board.

Figure C-7.  Solder Connectors to RCM3700 Prototyping Board

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3
�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3
�
4
'

�
'
!3
�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$

�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�
"#

�
"

'
(.

'
)#

��(��" �
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1('"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�((')+

�#�*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+'#-

 "

 (

'(#

'("'""

1
.'
")

9)'*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

-���1�

-���1


-���1+
128 RabbitCore RCM3700



C.6  Mounting LCD/Keypad Module on the Prototyping Board
Install the LCD/keypad module on header sockets LCD1JA, LCD1JB, and LCD1JC of the 
RCM3700 Prototyping Board as shown in Figure C-8. Be careful to align the pins over the 
headers, and do not bend them as you press down to mate the LCD/keypad module with 
the RCM3700 Prototyping Board.

Figure C-8.  Install LCD/Keypad Module on RCM3700 Prototyping Board

CAUTION: Pin PB7 is connected as both switch S2 and as an external I/O bus on the 
Prototyping Board. Do not use S2 when the LCD/keypad module is installed.

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 � �'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
� �
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$ ')

�-

�+ �.

/�( /(

�#
.*

�	�

0#
.*

/�"

�("�((

1)

'#

'+ '
.

'
(!

�()

'((

1#

'* '$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#�
�
�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+ 1" '(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)
6)
�

�
	
�

�*
�

�*
�

�
	
�

�)
6)
�

 '�(/%  '�(/'

 '�(/�

1*

'($

�(* %�(

�
�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*
�

�
%
�
�

�
�
*

���
�
�

�
�
$3

�
4
�

�
�
!

�
�
#

�
�
+

�
'
"3

�
4
'

�
'
!3

�
4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($ �
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)�
�
�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

( "

��(

'4( '4" '4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(!'4((

14"

14(
1.

�")
'"# '"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)! �)( �)" �)) �)# �)* �)$

')*

�
#)

'"-/+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

��
��

�
�

� �
�	

!$ !* !# !) !" !( !! �
�	


�
�	

�
). '
)!

'
)(

'
)"

'
))

'
)#

�)-��#! �#(��#"

�
#.

��( ��"

�#*
�#-

�#$

��)

�#+

�)�"�(

'�	����

/�* /�$ /�+	
'

	
'

	
'

	
'

	
'

	
'

�� ��
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$
�)
+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

�
"#

�
"

'
(.

'
)#

��(��" �
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1('"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�((')+

�#�*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+'#-

 "

 (

'(#

'("'""

1
.'
")

9)'*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+

-���1�

-���1


-���1+
User’s Manual 129



C.7  Bezel-Mount Installation
This section describes and illustrates how to bezel-mount the LCD/keypad module 
designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-9, then use the bezel faceplate to mount the LCD/keypad module onto 
the panel.

Figure C-9.  Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

)6
#!
!

�.
$6
#�

)6(!!
�+.6.�

"6.+!
�+"6-�

!6")!
�*6.�

!6("*��@�#,
�)�

	<,*<,

!6
()
!

�)
6)
�

130 RabbitCore RCM3700



3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad 
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm) 
longer than the thickness of the panel.

Figure C-10.  LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or 
two turns to each screw in sequence until all are tightened manually as far as they can 
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

��A��5��2��

���� �9�%����

1( 1"
'(

'" ')

'#
1)

�
(+

/(

:(

�(

�(

�" �) �#

�
-

�
(!

�
((

:" :) :#

�
("

�* �$

:* :$

�
()

�+

�
(#

�.

�
(*

�
(.

:+ :. '*

�
($

'$/)
1#

�	(
/"

'
.

'
+

&�(

�����
User’s Manual 131



C.7.1  Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the RCM3700 
Prototyping Board, and is connected via a ribbon cable as shown in Figure C-11.

Figure C-11.  Connecting LCD/Keypad Module to RCM3700 Prototyping Board

Note the locations and connections relative to pin 1 on both the RCM3700 Prototyping 
Board and the LCD/keypad module.

Rabbit Semiconductor offers 2 ft. (60 cm) extension cables. Contact your authorized dis-
tributor or a Rabbit Semiconductor sales representative for more information.

����
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�%
&
 �

�'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
�

�
"

�
(

�
(

�
)

�
*

�
+

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
	
�

�%
&
 �

�'
�

 �
�
(

 �
�
)

 �
�
*

�
	
�

�
	
��
"

�
!

�
(

�
)

�
*

�
+

 "

'(

'"

��(

�(
�"
�)
�#

�
,

�
,

�*

�$')

�-

�+�.

/�(/(
�#.*

�	�

0#.*

/�"

�(" �((

1)

'#

'+'
.

'
(!

�()

'((

1#

'*'$

'
-

/"

�	�

�����

�%*

�%)

��!

��$

�%!

����

�*�

�2#

�2$

�'(���"

�'!3�4�

��*

��(

��+3�4�

��#

�%��

�
�
#��

�
"

���5�

��+

�%#

�%"

��(

��)

��*

��+

�%+

�2!

�2(

�2*

�2+

��#

��!

��*

��$
�4�

�'"
�4'

�')�
��)

�	�

�����������

�
	
�

	
'

1(

'("

'()

'(*
'(#

 (

'(+1"'(.
1$

�(#

�(
'(-

�"
/#

�'�	

�)6)�

�
	
�

�*�

�*�

�
	
�

�)6)�

 '�(/% '�(/'

 '�(/�

1*

'($

�(*%�(
�

�	

�
4
�

�
4
�

�
4
�

�
�	

�'73�7�3��'&��

�*�

�
%
�
�

�
�
*

���
�
�

�
�
$3�

4
�

�
�
!

�
�
#

�
�
+

�
'
"3�

4
'

�
'
!3�

4
�

�
2
$

�
2
#

�
%
*

�
%
)

�
%
!

�
2
(

�
�
(

�
�
)

�
�
*

�
�
+

/*

�
	
�

�($�
	
�

��
�
�

�
�
#

���
5
�

�
�
(

�
�
*

�
'
)��

�
)

�
2
+

�
2
*

�
%
+

�
%
#

�
%
"

�
2
!

�
�
!

�
�
"

�
�
#

�
�
$

�
�
+

�
4
�

�
'
(�

�
�
"

'""

'"$
�"(

�(.

'
"!

�(-
'"(

�"!

�""

/�#

("

��(

'4('4"'4)

'4#

'4*

'4$

'4+

'4.

'4-

'4(! '4((

14"

14(
1.

�")
'"#'"*

'")

1+

'"+
�"*

�"#
'".

�"$

�"+

�".

�"-
/�.

�)!�)(�)"�))�)#�)*�)$

')*

�
#)

'"- /+
�8��7�����

�
)+

/.

�
�
�
2


�
�	

�
##

�����
���
�	

!$!*!#!)!"!(!!�
�	


�
�	

�
).

'
)!

'
)(

'
)"

'
))

'
)#

�)-��#!�#(��#"

�
#.

��(��"

�#*
�#-

�#$

��)

�#+

�) �" �(

'�	����

/�*/�$/�+ 	
'

	
'

	
'

	
'

	
'

	
'

����
�
�
�
�

 �
�
!

 �
�
"

 �
�
#

 �
�
$

�
	
�

�
)

�
(

�
!

�
"

�
#

�
$

�
'
7
)$�)+4

4
��
�
�
��
�

�
�
�
��

�
9
�
�	
�
�%
�
�
�
�

�����

'
"

�"

�
(

'
)

�" '( �(

'
*

1"

/�( �)
1(

'#

'
(!

'�(

�
$

'()
'("

�
+

�.

�"*

�"$

�(( �() �(# �(! �- �(" �(*

�
(.

:.

�
($

:*

�
"(:"

1*

/"

���� �9
%����

/#

&�(

�
(+ :#

�
"" :$

�
") :+

�
"!

:
) �
(-

1+ '(#

�
"#

'
(*

'
($

1$

1#

'+'-
1)

 '�( '((

�#
�*

'$

/(

:(

/*

'(+ �	(

/*

 �)*!!
"6.��

��8��
)6)��

(

"

)

#

�6�6�J�*��

-���1


�
���(

�
��
�(

�
"#

�
"

'
(.

'
)#

��( ��"�
(.

�
)$

')*
'(-

'
"$

'
"+

'
".

�(*
�($

')$
')-
�()

1( '"*

/�(
'+

/�)

/"

'
))

'
)"

'
)!

'
)(

'(*

'(+
'"!

').
'#(

1#

�
$

�(( ')+

�# �*
1*

'"-

/�
"

9(

'#!

'(!

:(

�+ '#-

 "

 (

'(#

'(" '""

1
. '
")

9) '*+
�)(

'
*.

�"-

��"
�)"
�)!

��(

/)

�)#

'($

�".

�(

'"#

'"(
�(

1$

'*)

�
"$

1)

�))
'.

1((

 #

 )
'*#��'**

 $

�"+
132 RabbitCore RCM3700



C.8  Sample Programs
Sample programs illustrating the use of the LCD/keypad module with the RCM3700 
Prototyping Board are provided in the SAMPLES\RCM3700\LCD_KEYPAD folder.

These sample programs use the auxiliary I/O bus on the Rabbit 3000 chip, and so the 
#define PORTA_AUX_IO line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample 
program, open it with the File menu (if it is not still open), then compile and run it by 
pressing F9. The RCM3700 must be connected to a PC using the programming cable as 
described in Chapter 2, “Getting Started.”.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

• KEYPADTOLED.C—This program demonstrates the use of the external I/O bus. The 
program will light up an LED on the LCD/keypad module and will display a message 
on the LCD when a key press is detected. The DS1 and DS2 LEDs on the RCM3700 
Prototyping Board will also light up.

• LCDKEYFUN.C—This program demonstrates how to draw primitive features from the   
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key 
release option.

• SWITCHTOLED.C—This program demonstrates the use of the external I/O bus. The 
program will light up an LED on the LCD/keypad module and will display a message 
on the LCD when a switch press is detected. The DS1 and DS2 LEDs on the RCM3700 
Prototyping Board will also light up.

Additional sample programs are available in the 122x32_1x7 folder in SAMPLES\
LCD_KEYPAD.
User’s Manual 133



C.9  LCD/Keypad Module Function Calls
When mounted on the RCM3700 Prototyping Board, the LCD/keypad module uses the 
auxiliary I/O bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the auxiliary I/O bus.

C.9.1  LCD/Keypad Module Initialization

The function used to initialize the LCD/keypad module can be found in the Dynamic C 
LIB\DISPLAYS\LCD122KEY7.LIB library.

Initializes the LCD/keypad module. The keypad is set up using keypadDef() or keyConfig() after 
this function call.

RETURN VALUE
None.

C.9.2  LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1) 
will come on, indicating that power is being applied to the LCD/keypad module. The red 
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the Dynamic C LIB\
DISPLAYS\LCD122KEY7.LIB library.

LED on/off control. This function will only work when the LCD/keypad module is installed on the 
RCM3700 Prototyping Board.

PARAMETERS
led is the LED to control.

0 = LED DS1
1 = LED DS2
2 = LED DS3
3 = LED DS4
4 = LED DS5
5 = LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off
1 = on

RETURN VALUE
None.

void dispInit();

void displedOut(int led, int value);
134 RabbitCore RCM3700



C.9.3  LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library 
located in the Dynamic C LIB\DISPLAYS\GRAPHIC library folder. When x and y coordi-
nates on the display screen are specified, x can range from 0 to 121, and y can range from 
0 to 31. These numbers represent pixels from the top left corner of the display.

Initializes the display devices, clears the screen.

RETURN VALUE
None.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot, 
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf, 
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Turns the display backlight on or off.

PARAMETER
onOff turns the backlight on or off

1—turn the backlight on
0—turn the backlight off

RETURN VALUE
None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER
onOff turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE
None.

SEE ALSO
glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);
User’s Manual 135



Sets display contrast.

NOTE: This function is not used with the LCD/keypad module since the support circuits 
are not available on the LCD/keypad module.

Fills the LCD display screen with a pattern.

PARAMETER
The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes 
for any other pattern.

RETURN VALUE
None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

Fills a rectangular block in the LCD buffer with the pattern specified. Any portion of the block that is 
outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

pattern is the bit pattern to display (all black if pattern is 0xFF, all white if pattern is 0x00, and 
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

void glSetContrast(unsigned level);

void glFillScreen(int pattern);

void glBlankScreen(void);

void glFillRegion(int left, int top, int width, 
int height, char pattern);
136 RabbitCore RCM3700



Fills a rectangular block in the LCD buffer with the pattern specified. The block left and width parame-
ters must be byte-aligned. Any portion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

pattern is the bit pattern to display (all black if pattern is 0xFF, all white if pattern is 0x00, and 
vertical stripes for any other pattern).

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock, glBlankRegion

Clears a region on the LCD display. The block left and width parameters must be byte-aligned. Any por-
tion of the block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block (x must be evenly divisible by 8).

top is the y coordinate of the top left corner of the block.

width is the width of the block (must be evenly divisible by 8).

height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glBlock

void glFastFillRegion(int left, int top, int width, 
int height, char pattern);

void glBlankRegion(int left, int top, int width, 
int height);
User’s Manual 137



Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the 
block that is outside the LCD display area will be clipped.

PARAMETERS
left is the x coordinate of the top left corner of the block.

top is the y coordinate of the top left corner of the block.

width is the width of the block.

height is the height of the block.

RETURN VALUE
None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any 
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are 
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

void glBlock(int left, int top, int width, 
int height);

void glPlotVPolygon(int n, int *pFirstCoord);
138 RabbitCore RCM3700



Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any 
portion of the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are 
specified, the function will return without doing anything.

PARAMETERS
n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of 
the polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, 
the function will return without doing anything.

PARAMETERS
n is the number of vertices.
pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3, ...

RETURN VALUE
None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

void glPlotPolygon(int n, int y1, int x1, int y2, 
int x2, ...);

void glFillVPolygon(int n, int *pFirstCoord);
User’s Manual 139



Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the 
polygon that is outside the LCD display area will be clipped. If fewer than 3 vertices are specified, the 
function will return without doing anything.

PARAMETERS
n is the number of vertices.
x1 is the x coordinate of the first vertex.
y1 is the y coordinate of the first vertex.
x2 is the x coordinate of the second vertex.
y2 is the y coordinate of the second vertex.
... are the coordinates of additional vertices.

RETURN VALUE
None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws the outline of a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the 
circle that is outside the LCD display area will be clipped.

PARAMETERS
xc is the x coordinate of the center of the circle.
yc is the y coordinate of the center of the circle.
rad is the radius of the center of the circle (in pixels).

RETURN VALUE
None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

void glFillPolygon(int n, int x1, int y1, int x2, 
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

void glFillCircle(int xc, int yc, int rad);
140 RabbitCore RCM3700



Initializes the font descriptor structure, where the font is stored in xmem. Each font character's bitmap is 
column major and byte-aligned.

PARAMETERS
pInfo is a pointer to the font descriptor to be initialized.

pixWidth is the width (in pixels) of each font item.

pixHeight is the height (in pixels) of each font item.

startChar is the value of the first printable character in the font character set.

endChar is the value of the last printable character in the font character set.

xmemBuffer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE
None.

SEE ALSO
glPrinf

Returns the xmem address of the character from the specified font set.

PARAMETERS
*pInfo is the xmem address of the bitmap font set.

letter is an ASCII character.

RETURN VALUE
xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO
glPutFont, glPrintf

void glXFontInit(fontInfo *pInfo, char pixWidth,    
char pixHeight, unsigned startChar, 
unsigned endChar, unsigned long xmemBuffer);

unsigned long glFontCharAddr(fontInfo *pInfo, 
char letter);
User’s Manual 141



Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font 
character's bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside 
the LCD display area will be clipped.

PARAMETERS
x is the x coordinate (column) of the top left corner of the text.

y is the y coordinate (row) of the top left corner of the text.

pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE
None.

SEE ALSO
glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values. 
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS
stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE
None.

SEE ALSO
Use glGetPfStep() to examine the current x and y printing step direction.

Gets the current glPrintf() printing step direction. Each step direction is independent of the other, 
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the 
font being displayed, which are multiplied by the step values.

RETURN VALUE
The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO
Use glGetPfStep() to control the x and y printing step direction.

void glPutFont(int x, int y, fontInfo *pInfo, 
char code);

void glSetPfStep(int stepX, int stepY);

int glGetPfStep(void);
142 RabbitCore RCM3700



Provides an interface between the STDIO string-handling functions and the graphic library. The 
STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will 
be clipped.

PARAMETERS
ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

pInst is a pointer to the font descriptor.

RETURN VALUE
None.

SEE ALSO
glPrintf, glPutFont, doprnt

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in 
the font set are printed, all others are skipped. For example, '\b', '\t', '\n' and '\r' (ASCII backspace, tab, 
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have 
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area 
will be clipped.

PARAMETERS
x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the upper left corner of the text.

pInfo is a pointer to the font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
glXFontInit

void glPutChar(char ch, char *ptr, int *cnt, 
glPutCharInst *pInst)

void glPrintf(int x, int y, fontInfo *pInfo, 
char *fmt, ...);
User’s Manual 143



Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are 
not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be 
sure to balance the calls. It is not a requirement to use these procedures, but a set of 
glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds 
up the rendering significantly.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glSwap

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD 
if the counter goes to zero.

RETURN VALUE
None.

SEE ALSO
glBuffLock, glSwap

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the 
counter is zero.

RETURN VALUE
None.

SEE ALSO
glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD 
that you are using)

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER
type value can be one of the following macros.

PIXBLACK draws black pixels (turns pixel on).
PIXWHITE draws white pixels (turns pixel off).
PIXXOR draws old pixel XOR'ed with the new pixel.

RETURN VALUE
None.

SEE ALSO
glGetBrushType

void glBuffLock(void);

void glBuffUnlock(void);

void glSwap(void);

void glSetBrushType(int type);
144 RabbitCore RCM3700



Gets the current method (or color) of pixels drawn by subsequent graphic calls. 

RETURN VALUE
The current brush type.

SEE ALSO
glSetBrushType

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function automatically calls 
glXGetFastmap if the left edge of the bitmap is byte-aligned and the left edge and width are each 
evenly divisible by 8.

This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad 
module.

PARAMETERS
x is the x coordinate in pixels of the top left corner of the bitmap (x must be evenly divisible by 8).
y is the y coordinate in pixels of the top left corner of the bitmap.
bmWidth is the width in pixels of the bitmap (must be evenly divisible by 8).
bmHeight is the height in pixels of the bitmap.
xBm is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is similar 
to glXPutBitmap, except that it's faster. The bitmap must be byte-aligned. Any portion of a bitmap 
image or character that is outside the LCD display area will be clipped.

This function call is intended for use only when a graphic engine is used to interface with the LCD/keypad 
module.

PARAMETERS
left is the x coordinate of the top left corner of the bitmap (x must be evenly divisible by 8).
top is the y coordinate in pixels of the top left corner of the bitmap.
width is the width of the bitmap (must be evenly divisible by 8).
height is the height of the bitmap.
xmemptr is the xmem RAM storage address of the bitmap.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

int glGetBrushType(void);

void glXGetBitmap(int x, int y, int bmWidth, 
int bmHeight, unsigned long xBm);

void glXGetFastmap(int left, int top, int width, 
int height, unsigned long xmemptr);
User’s Manual 145



Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are 
outside the LCD display area, the dot will not be plotted.

PARAMETERS
x is the x coordinate of the dot.

y is the y coordinate of the dot.

RETURN VALUE
None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is 
beyond the LCD display area will be clipped.

PARAMETERS
x0 is the x coordinate of one endpoint of the line.

y0 is the y coordinate of one endpoint of the line.

x1 is the x coordinate of the other endpoint of the line.

y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE
None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap. 

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glRight1

void glPlotDot(int x, int y);

void glPlotLine(int x0, int y0, int x1, int y1);

void glLeft1(int left, int top, int cols, int rows);
146 RabbitCore RCM3700



Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap. 

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glHScroll, glLeft1

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap. 

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glDown1

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap. 

cols is the number of columns in the window, must be evenly divisible by 8, otherwise truncates.

rows is the number of rows in the window.

RETURN VALUE
None.

SEE ALSO
glVScroll, glUp1

void glRight1(int left, int top, int cols, int rows);

void glUp1(int left, int top, int cols, int rows);

void glDown1(int left, int top, int cols, int rows);
User’s Manual 147



Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled 
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will 
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is 
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap. 

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll 
to the left).

RETURN VALUE
None.

SEE ALSO
glVScroll

void glHScroll(int left, int top, int cols, 
int rows, int nPix);
148 RabbitCore RCM3700



Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled 
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will 
be truncated to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is 
a width of 8 pixels and a height of one row.

PARAMETERS
left is the top left corner of bitmap, must be evenly divisible by 8.

top is the top left corner of the bitmap. 

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll 
up).

RETURN VALUE
None.

SEE ALSO
glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls 
glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each 
evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap.

top is the top left corner of the bitmap. 

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols, 
int rows, int nPix);

void glXPutBitmap(int left, int top, int width, 
int height, unsigned long bitmap);
User’s Manual 149



Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like 
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS
left is the top left corner of the bitmap, must be evenly divisible by 8, otherwise truncates.

top is the top left corner of the bitmap. 

width is the width of the bitmap, must be evenly divisible by 8, otherwise truncates.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE
None.

SEE ALSO
glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text 
window using only character row and column coordinates. The text window feature provides end-of-line 
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS
window is a pointer to the window frame descriptor.

pFont is a pointer to the font descriptor.

x is the x coordinate of the top left corner of the text window frame.

y is the y coordinate of the top left corner of the text window frame.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE
  0—window frame was successfully created.
 -1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.
-3—Invalid winHeight and/or winWidth parameter value.

void glXPutFastmap(int left, int top, int width, 
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window, 
fontInfo *pFont, int x, int y, int winWidth, 
int winHeight)
150 RabbitCore RCM3700



This function initializes the window frame structure with the border and title information.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

border is the border style:
SINGLE_LINE—The function will draw a single-line border around the text window.
DOUBLE_LINE—The function will draw a double-line border around the text window.

title is a pointer to the title information:
If a NULL string is detected, then no title is written to the text menu.
If a string is detected, then it will be written center-aligned to the top of the text menu box.

RETURN VALUE
None.

SEE ALSO
TextBorder, TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

This function displays the border for a given window frame. This function will automatically adjust the 
text window parameters to accommodate the space taken by the text border. This adjustment will only 
occur once after the TextBorderInit function executes.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO
TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame, 
TextCursorLocation

void TextBorderInit(windowFrame *wPtr, int border, 
char *title);

void TextBorder(windowFrame *wPtr);
User’s Manual 151



Sets the cursor location to display the next character. The display location is based on the height and 
width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a character column location.

row is a character row location. 

RETURN VALUE
None.

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame

Gets the current cursor location that was set by a Graphic Text... function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

col is a pointer to cursor column variable.

row is a pointer to cursor row variable.

RETURN VALUE
Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextGotoXY(windowFrame *window, int col, 
int row);

void TextCursorLocation(windowFrame *window, 
int *col, int *row);
152 RabbitCore RCM3700



Displays a character on the display where the cursor is currently pointing. Once a character is displayed, 
the cursor will be incremented to the next character position. If any portion of a bitmap character is out-
side the LCD display area, the character will not be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font 
set are printed; escape sequences '\r' and '\n' are also recognized. All other escape sequences will be 
skipped over; for example, '\b' and \'t' will cause nothing to be displayed. 

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed. The cursor then remains at the end of the string.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
window is a pointer to a font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
TextPrintf(&TextWindow, "Test %d\n", count);

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextPutChar(struct windowFrame *window, char ch);

void TextPrintf(struct windowFrame *window, 
char *fmt, ...);
User’s Manual 153



This function returns the maximum number of characters that can be displayed within the text window.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
The maximum number of characters that can be displayed within the text window.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

This functions clears the entire area within the specified text window.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS
wPtr is a pointer to the window frame descriptor.

RETURN VALUE
None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

int TextMaxChars(windowFrame *wPtr);

void TextWinClear(windowFrame *wPtr);
154 RabbitCore RCM3700



C.9.4  Keypad

The functions used to control the keypad are contained in the Dynamic C LIB\KEYPADS\
KEYPAD7.LIB library.

Initializes keypad process

RETURN VALUE
None.

SEE ALSO
brdInit

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and 
debouncing.

PARAMETERS
cRaw is a raw key code index.

1 × 7 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick, which is approximately one debounce period or 5 µs.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick, which is approximately one debounce period or 5 µs.

How long to hold before going to high-speed repeat.
0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress, 
char cRelease, char cCntHold, char cSpdLo, 
char cCntLo, char cSpdHi);

[0] [1] [2] [3]
[4] [5] [6]
User’s Manual 155



cSpdHi is a high-speed repeat tick, which is approximately one debounce period or 5 µs.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE
None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 × 8 matrix keypad.

RETURN VALUE
None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress.

RETURN VALUE
The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

Pushes the value of cKey to the top of the input queue, which is 16 bytes deep.

PARAMETER
cKey

RETURN VALUE
None.

SEE ALSO
keyGet

void keyProcess(void);

char keyGet(void);

int keyUnget(char cKey);
156 RabbitCore RCM3700



Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 1 × 7

where
'D' represents Down Scroll
'U' represents Up Scroll
'R' represents Right Scroll
'L' represents Left Scroll
'–' represents Page Down
'+' represents Page Up
'E' represents the ENTER key

Example: Do the following for the above physical vs. ASCII return key codes.

keyConfig (  3,'R',0, 0, 0, 0, 0 );
keyConfig (  6,'E',0, 0, 0, 0, 0 );
keyConfig (  2,'D',0, 0, 0, 0, 0 );
keyConfig (  4,'-',0, 0, 0, 0, 0 );
keyConfig (  1,'U',0, 0, 0, 0, 0 );
keyConfig (  5,'+',0, 0, 0, 0, 0 );
keyConfig (  0,'L',0, 0, 0, 0, 0 );

Characters are returned upon keypress with no repeat.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit 
position.

PARAMETER
pcKeys is a pointer to the address of the value read.

RETURN VALUE
None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3

['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);
User’s Manual 157



158 RabbitCore RCM3700



APPENDIX D.  POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3700, and includes some background on the chip
select circuit used in power management.

D.1  Power Supplies
Power is supplied from the motherboard to which the RCM3700 is connected via header 
J1. The RCM3700 has an onboard +3.3 V linear power regulator that provides the +3.3 V 
supply to operate the microprocessor-related circuitry of the RCM3700, but not the Ether-
net circuit, which requires + 5 V. Figure D-1 shows the power-supply circuit.

Figure D-1.  RCM3700 Power Supply

The RCM3700 requires a regulated 4.75 V to 5.25 V DC power source. An RCM3700 with 
no loading at the outputs operating at 22.1 MHz typically draws 100 mA.

CAUTION: Be sure that the input to pin 39 on header J1 is connected to a regulated 5 V 
supply. The regulated 5 V supply is required for the Ethernet circuitry, which is not 
protected against overvoltage conditions.

 �	������5������1 ����

�
�
5
�
�

�	

/(

(!�H2

 7(((+
1+

�)6)��

)

(

"

).

)-

#!

(!�H2

��	

)+ �%��3�4�

�,������
%������

�*��
User’s Manual 159



D.1.1  Battery Backup

The RCM3700 does not have a battery, but there is provision for a customer-supplied bat-
tery to back up the data SRAM and keep the internal Rabbit 3000 real-time clock running.

Header J1, shown in Figure D-1, allows access to the external battery. This header makes 
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 3000 real-time clock to retain data with the RCM3700 powered down.

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is 
recommended. A lithium battery is strongly recommended because of its nearly constant 
nominal voltage over most of its life.

The drain on the battery by the RCM3700 is typically 6 µA when no other power is sup-
plied. If a 235 mA·h battery is used, the battery can last about 4.5 years:

The actual battery life in your application will depend on the current drawn by components 
not on the RCM3700 and the storage capacity of the battery. The RCM3700 does not drain 
the battery while it is powered up normally.

Cycle the main power off/on after you install a backup battery for the first time, and when-
ever you replace the battery. This step will minimize the current drawn by the real-time 
clock oscillator circuit from the backup battery should the RCM3700 experience a loss of 
main power.

NOTE: Remember to cycle the main power off/on any time the RCM3700 is removed 
from the Prototyping Board or motherboard since that is where the backup battery 
would be located.

Rabbit Semiconductor’s Technical Note TN235, External 32.768 kHz Oscillator Circuits, 
provides additional information about the current draw by the real-time clock oscillator 
circuit.

235 mA·h
6 µA

------------------------ 4.5 years.=
160 RabbitCore RCM3700



D.1.2  Battery-Backup Circuit

Figure D-2 shows the battery-backup circuit.

Figure D-2.  RCM3700 Backup Battery Circuit

The battery-backup circuit serves three purposes:

• It reduces the battery voltage to the SRAM and to the real-time clock, thereby limiting 
the current consumed by the real-time clock and lengthening the battery life.

• It ensures that current can flow only out of the battery to prevent charging the battery.

• A voltage, VOSC, is supplied to U5, which keeps the 32.768 kHz oscillator working 
when the voltage begins to drop.

D.1.3  Reset Generator

The RCM3700 uses a reset generator to reset the Rabbit 3000 microprocessor when the volt-
age drops below the voltage necessary for reliable operation. The reset occurs between 
2.85 V and 3.00 V, typically 2.93 V.

The RCM3700 has a reset pin, pin 36 on header J1. This pin provides access to the reset 
output from the reset generator, and is also connected to the reset input of the Rabbit 3000 
to allow you to reset the microprocessor externally. A resistor divider consisting of R22 
and R23 attenuates the signal associated with an externally applied reset to prevent it from 
affecting the reset generator.

���7

(*!���

�(#
�%��G�4�

#$��������������
�()

#+���

���'

�( �(+

(!!��

'#(
(!!��2

')-
(!��2
User’s Manual 161



162 RabbitCore RCM3700



APPENDIX E.  SECURE EMBEDDED WEB
APPLICATION KIT

Appendix E provides information for the Secure Embedded Web
Application Kit based on the RCM3700. In addition to an
RCM3700 RabbitCore module and Dynamic C 8.51 or a later
version, the Secure Embedded Web Application Kit comes with
an enhanced software bundle that facilitates the rapid develop-
ment of secure Web browser interfaces for embedded system
control.

The enhanced software bundle that is provided in the Secure Embedded Web Application 
Kit comes on three CD-ROMs. The software modules included in the software bundle 
require Dynamic C 8.51 or a later version, which is included on a separate CD-ROM in 
the Secure Embedded Web Application Kit.

Software Modules on CD-ROM 1—Dynamic C FAT File System module.

The Dynamic C FAT (File Allocation Table) File System module provides a ready-to-run 
flash-based file system that:

• works with a Dynamic C® HTTP or RabbitWeb server to update content reliably

• provides reliable storage and transfer of databases and Web pages according to an 
established, widely used file system

• supports a battery-backed wear-reducing cache system that protects the file system dur-
ing power cycles

Software Modules on CD-ROM 2—Dynamic C RabbitWeb module.

The Dynamic C RabbitWeb module provides an HTTP/HTML rapid Web development 
extension for embedded devices, allowing you to:

• read and write program variables remotely, eliminating complex CGI programming

• easily create controls such as pulldown menus or control buttons

• ensure valid input values and proper user authorization

• elegantly indicate input errors for easy correction
User’s Manual 163



Software Modules on CD-ROM 3—Dynamic C Secure Sockets Layer (SSL) module. 
This module provides HTTPS security for supported Rabbit-based devices to provide:

• fast processing of complex encryption algorithms (up to 120 kbits/s)

• support for HTTPS with SSL version 3 and Transport Layer Security (TLS) version 1

• royalty- and license-free with digital certificate creation utility

• secure existing Web application in minutes with less than 10 lines of code

E.1  Sample Programs
Sample programs are included with the bundled Dynamic C modules to illustrate the soft-
ware features associated with each Dynamic C module.

• The SAMPLES\FILESYSTEM folder contains sample programs that demonstrate the use 
of the Dynamic C FAT file system.

• The SAMPLES\TCPIP\RABBITWEB folder contains sample programs that demonstrate 
the use of the Dynamic C RabbitWeb software.

• The SAMPLES\TCPIP\SSL\HTTPS folder contains sample programs that demonstrate 
the use of the Dynamic C Secure Sockets Layer (SSL) software.

E.2  Module Documentation
Complete documentation for the Dynamic C modules and their functions is provided as 
part of the Dynamic C installation. Double-click the documentation icon to reach the 
menu or, if the icon is missing, use your browser to find and load default.htm in the docs 
folder, found in the Dynamic C installation folder.
164 RabbitCore RCM3700



INDEX

A
A/D converter

calibration ....................... 101
CONVERT pin ............... 100
function calls

anaIn .............................. 45
anaInCalib ..................... 47
anaInConfig ................... 41
anaInDiff ....................... 50
anaInDriver ................... 43
anaInEERd .................... 52
anaInEEWr .................... 54
anaInmAmps ................. 51
anaInVolts ..................... 49
digConfig ...................... 55
digIn .............................. 56
digOut ........................... 56

inputs
current measurements ... 99
differential measure-

ments .......................... 98
negative voltages ........... 98
single-ended measure-

ments .......................... 97
additional information

online documentation .......... 5
analog inputs 

See A/D converter
application kits

Ethernet Connection Kit ..... 5
Secure Embedded Web Appli-

cation Kit ........................ 5
auxiliary I/O bus ................... 28

software ........................... 134

B
battery backup

battery life ....................... 160
circuit .............................. 161

board initialization
function calls ..................... 40

brdInit ............................ 40
bus loading ............................ 82

C
clock doubler ........................ 34
conformal coating ................. 87

D
Development Kit ................. 4, 7

AC adapter .......................... 4
DC power supply ................ 4
Getting Started instructions 4
programming cable ............. 4

digital I/O .............................. 24
I/O buffer sourcing and sink-

ing limits ....................... 86
memory interface .............. 28
SMODE0 .......................... 31
SMODE1 .......................... 31

dimensions
LCD/keypad module ....... 123
LCD/keypad template ..... 126
RCM3700 .......................... 78
RCM3700 Prototyping Board 

....................................... 93
RCM3720 Prototyping Board 

..................................... 113
Dynamic C .............. 5, 7, 11, 37

add-on modules ......... 5, 7, 59
FAT file system module 163
installation ....................... 7
RabbitWeb module ..... 163
Secure Sockets Layer (SSL) 

module ...................... 164
libraries ............................. 39
sample programs ............... 15
standard features

debugging ...................... 38
telephone-based technical 

support ...................... 5, 59
upgrades and patches ........ 59
USB port settings .............. 11

E
Ethernet cables ...................... 61
Ethernet connections ....... 61, 63

10/100-compatible ............ 63
10Base-T Ethernet card .... 61
additional resources .......... 76
direct connection ............... 63
Ethernet hub ...................... 61
IP addresses ................ 63, 65
MAC addresses ................. 66
steps ............................ 61, 62

Ethernet port ......................... 30
pinout ................................ 30

exclusion zone ...................... 79

F
features .................................... 1

RCM3700 Prototyping Board 
................................. 90, 91

RCM3720 Prototyping Board 
............................. 111, 112

flash memory addresses
user blocks ........................ 35

H
hardware connections

install RCM3700 on Prototyp-
ing Board ........................ 8

power supply ..................... 10
programming cable ............. 9

hardware reset ....................... 10
headers

RCM3700 Prototyping Board
JP1 ............................... 105
JP2 ............................... 102

RCM3720 Prototyping Board
J3 ................................. 119
User’s Manual 165



I
I/O address assignments

LCD/keypad module .......127
I/O buffer sourcing and sinking 

limits .............................86
IP addresses ...........................65

how to set in sample programs 
........................................70

how to set PC IP address ...71

J
jumper configurations ...........88

JP3 (flash memory size) ....88
JP4 (flash memory bank 

select) ......................35, 88
jumper locations ................88
RCM3700 Prototyping Board 

......................................107
JP1 (RS-485 bias and termi-

nation resistors) 105, 108
JP2 (RS-232/RS-485 on 

Serial Port E) ............108
JP4 (A/D converter outputs) 

...................................108
JP5 (analog inputs refer-

ence) .........................108
JP6 (analog inputs refer-

ence) .........................108
JP7 (analog inputs refer-

ence) .........................108
JP8 (analog voltage/

4–20 mA measurement 
options) .....................108

RCM3720 Prototyping Board 
......................................117

K
keypad template ..................126

removing and inserting la-
bel ................................126

L
LCD/keypad module

bezel-mount installation ..130
dimensions .......................123
function calls

dispInit .........................134
header pinout ...................127
I/O address assignments ..127

keypad
function calls

keyConfig ................155
keyGet ......................156
keyInit ......................155
keypadDef ................157
keyProcess ...............156
keyScan ....................157
keyUnget ..................156

keypad template ..............126
LCD display

function calls
glBackLight .............135
glBlankRegion .........137
glBlankScreen ..........136
glBlock ....................138
glBuffLock ..............144
glBuffUnlock ...........144
glDispOnOff ............135
glDown1 ..................147
glFastFillRegion ......137
glFillCircle ...............140
glFillPolygon ...........140
glFillRegion .............136
glFillScreen ..............136
glFillVPolygon ........139
glFontCharAddr .......141
glGetBrushType ......145
glGetPfStep ..............142
glHScroll ..................148
glInit ........................135
glLeft1 .....................146
glPlotCircle ..............140
glPlotDot ..................146
glPlotLine ................146
glPlotPolygon ..........139
glPlotVPolygon .......138
glPrintf .....................143
glPutChar .................143
glPutFont .................142
glRight1 ...................147
glSetBrushType .......144
glSetContrast ...........136
glSetPfStep ..............142
glSwap .....................144
glUp1 .......................147
glVScroll ..................149
glXFontInit ..............141
glXGetBitmap ..........145
glXGetFastmap ........145
glXPutBitmap ..........149
glXPutFastmap ........150
TextBorder ...............151

TextBorderInit .........151
TextCursorLocation .152
TextGotoXY ............152
TextMaxChars .........154
TextPrintf .................153
TextPutChar .............153
TextWinClear ..........154
TextWindowFrame ..150

LEDs
function calls ...............134

displedOut ................134
mounting instructions ......129
reconfigure keypad ..........126
remote cable connection ..132
removing and inserting keypad 

label .............................126
sample programs .............133
specifications ...................124
versions ...........................123
voltage settings ................125

M
MAC addresses .....................66
mounting instructions

LCD/keypad module .......129

P
pinout

Ethernet port ......................30
LCD/keypad module .......127
RCM3700

alternate configurations .26
RCM3700 headers .............24
RCM3700 Prototyping Board 

.......................................95
RCM3720 Prototyping Board 

.....................................115
power supplies

+5 V .................................159
battery backup .................160
linear voltage regulator ...159

Program Mode .......................32
switching modes ................32

programming cable
PROG connector ...............32
RCM3700 connections ........9

programming port .................31
Prototyping Board

features ..............................15
mounting RCM3700 ............8
sample programs ...............15
166 RabbitCore RCM3700



R
Rabbit 3000

data and clock delays ........ 84
spectrum spreader time delays 

....................................... 84
Rabbit subsystems ................ 25
RCM3700

mounting on Prototyping 
Board .............................. 8

RCM3700 Prototyping Board 
....................................... 90

A/D converter
inputs

current measurements 99
differential measure-

ments ...................... 98
adding components ........... 96
dimensions ........................ 93
expansion area ................... 91
features ........................ 90, 91
jumper configurations 

............................. 107, 108
jumper locations .............. 107
pinout ................................ 95
power supply ..................... 94
prototyping area ................ 96
RS-485 network .............. 104
specifications .................... 94
thermistor input ................. 99
use of parallel ports ......... 109

RCM3720 Prototyping Board 
..................................... 111

adding components ......... 117
RS-232 components .... 118

dimensions ...................... 113
expansion area ................. 112
features .................... 111, 112
how to disable demonstration 

hardware ..................... 116
jumper configurations ..... 117
pinout .............................. 115
power supply ................... 114
prototyping area .............. 117
specifications .................. 114
use of parallel ports ......... 120

reset ....................................... 10
reset generator ................. 161
use of reset pin ................ 161

RS-485 network
termination and bias resis-

tors .............................. 105
Run Mode ............................. 32

switching modes ............... 32

S
sample programs ................... 15

A/D converter
AD_CALDIFF_CH.C 20, 101
AD_CALMA_CH.C . 20, 101
AD_CALSE_ALL.C . 20, 101
AD_CALSE_CH.C ..... 101
AD_CALSE_CHAN.C . 20
AD_RDDIFF_CH.C . 20, 101
AD_RDMA_CH.C 20, 101
AD_RDSE_ALL.C 20, 101
AD_SAMPLE.C ........... 21
ANAINCONFIG.C ....... 21
DNLOADCALIB.C ...... 22
THERMISTOR.C ... 21, 99
UPLOADCALIB.C ....... 22

configuring to run on a 
Prototyping Board ........ 14

FAT file system
FMT_DEVICE.C .......... 75

FAT file system module . 164
getting to know the RCM3700

CONTROLLED.C ........ 16
DIO.C ............................ 15
FLASHLED1.C ............ 15
IR_DEMO.C ................. 16
TOGGLESWITCH.C .... 15

how to run TCP/IP sample 
programs ................. 69, 70

how to set IP address ........ 70
LCD/keypad module ....... 133

KEYBASIC.C ............. 126
KEYPADTOLED.C .... 133
LCDKEYFUN.C ......... 133
reconfigure keypad ...... 126
SWITCHTOLED.C .... 133

module integration ............ 74
INTEGRATION.C ........ 75
INTEGRATION_FAT_

SETUP.C .................... 75
onboard serial flash

SERIAL_FLASHLOG.C ..
17

SFLASH_INSPECT.C .. 17
PONG.C ............................ 11
RabbitWeb module ......... 164
Secure Sockets Layer (SSL) 

module ........................ 164

serial communication
FLOWCONTROL.C ..... 17
PARITY.C .................... 18
SIMPLE3WIRE.C ........ 18
SIMPLE485MASTER.C 19
SIMPLE485SLAVE.C .. 19
SIMPLE5WIRE.C ........ 18
SWITCHCHAR.C ........ 18

TCP/IP
BROWSELED.C .......... 72
DISPLAY_MAC.C ....... 66
MBOXDEMO.C ........... 72
PINGLED.C .................. 72
PINGME.C .................... 72
RabbitWeb

BLINKLEDS.C ......... 73
DOORMONITOR.C . 73
HANGMAN_GAME.C . 73
LEDS_CHECKBOX.C . 73
SPRINKLER.C ......... 73
TEMPERATURE.C .. 73

SMTP.C ........................ 73
SSL

SSL_BROWSELED.C .. 74
SSL_MBOXDEMO.C ... 74

serial communication ............ 29
RCM3700 Prototyping Board

RS-232 ........................ 103
RS-485 network .......... 104
RS-485 termination and bias 

resistors .................... 105
RCM3720 Prototyping Board

RS-232 ........................ 119
serial ports ............................. 29

Ethernet port ..................... 30
programming port ............. 31

software .................................. 5
auxiliary I/O bus ......... 28, 57
I/O drivers ......................... 57
libraries ............................. 39

LCD/keypad module
keypad ..................... 155
LCD display ............ 134

PACKET.LIB ................ 58
RCM37xx.LIB .............. 39
RS232.LIB .................... 58
serial flash ..................... 58
TCP/IP ........................... 58

serial communication driv-
ers ................................. 58

serial flash drivers ............. 58
TCP/IP drivers .................. 58
User’s Manual 167



specifications .........................77
bus loading ........................82
digital I/O buffer sourcing and 

sinking limits .................86
dimensions .........................78
electrical, mechanical, and en-

vironmental ...................80
exclusion zone ...................79
header footprint .................81
headers ...............................81
LCD/keypad module

dimensions ...................123
electrical ......................124
header footprint ...........124
mechanical ...................124
relative pin 1 locations 124
temperature ..................124

Rabbit 3000 DC characteris-
tics .................................85

Rabbit 3000 timing dia-
gram ..............................83

RCM3700 Prototyping Board 
........................................94

RCM3720 Prototyping Board 
......................................114

relative pin 1 locations ......81
spectrum spreader .................84
subsystems

digital inputs and outputs ..24
switching modes ....................32

T
TCP/IP primer .......................63
technical support ...................12
troubleshooting

changing COM port ...........11
connections ........................11

U
USB/serial port converter

Dynamic C settings ...........11
user block

function calls
readUserBlock ...............35
writeUserBlock ..............35
168 RabbitCore RCM3700



SCHEMATICS

090-0177 RCM3700 Schematic
www.rabbit.com/documentation/schemat/090-0177.pdf

090-0180 RCM3600/RCM3700 Prototyping Board Schematic
www.rabbit.com/documentation/schemat/090-0180.pdf

090-0199 RCM3720 Prototyping Board Schematic
www.rabbit.com/documentation/schemat/090-0199.pdf

090-0156 LCD/Keypad Module Schematic
www.rabbit.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.rabbit.com/documentation/schemat/090-0128.pdf

090-0185 Programming Cable with Adapter Board Schematic
www.rabbit.com/documentation/schemat/090-0185.pdf

You may use the URL information provided above to access the latest schematics directly.
User’s Manual 169

http://www.rabbit.com/documentation/schemat/090-0177.pdf
http://www.rabbit.com/documentation/schemat/090-0180.pdf
http://www.rabbit.com/documentation/schemat/090-0128.pdf
http://www.rabbit.com/documentation/schemat/090-0156.pdf
http://www.rabbit.com/documentation/schemat/090-0185.pdf
http://www.rabbit.com/documentation/schemat/090-0199.pdf



	RabbitCore RCM3700 User's Manual
	Table of Contents
	1. Introduction
	1.1 RCM3700 Features
	1.2 Advantages of the RCM3700
	1.3 Development and Evaluation Tools
	1.3.1 Development Kit
	1.3.2 Software
	1.3.3 Application Kits
	1.3.4 Online Documentation


	2. Getting Started
	2.1 Install Dynamic C
	2.2 Hardware Connections
	2.2.1 Attach Module to Prototyping�Board
	2.2.2 Connect Programming Cable
	2.2.3 Connect Power

	2.3 Starting Dynamic C
	2.4 Run a Sample Program
	2.4.1 Troubleshooting

	2.5 Where Do I Go From Here?
	2.5.1 Technical Support


	3. Running Sample Programs
	3.1 Introduction
	3.2 Sample Programs
	3.2.1 Use of Serial Flash
	3.2.2 Serial Communication
	3.2.3 A/D Converter Inputs


	4. Hardware Reference
	4.1 RCM3700 Digital Inputs and Outputs
	4.1.1 Memory I/O Interface
	4.1.2 Other Inputs and Outputs

	4.2 Serial Communication
	4.2.1 Serial Ports
	4.2.2 Ethernet Port
	4.2.3 Serial Programming Port

	4.3 Serial Programming Cable
	4.3.1 Changing Between Program Mode and Run Mode
	4.3.2 Standalone Operation of the RCM3700

	4.4 Other Hardware
	4.4.1 Clock Doubler
	4.4.2 Spectrum Spreader

	4.5 Memory
	4.5.1 SRAM
	4.5.2 Flash EPROM
	4.5.3 Serial Flash
	4.5.4 Dynamic C BIOS Source Files


	5. Software Reference
	5.1 More About Dynamic C
	5.2 Dynamic C Functions
	5.2.1 Board Initialization
	5.2.2 Analog Inputs
	5.2.3 Digital I/O
	5.2.4 Serial Communication Drivers
	5.2.5 Serial Flash
	5.2.6 TCP/IP Drivers

	5.3 Upgrading Dynamic C
	5.3.1 Add-On Modules


	6. Using the TCP/IP Features
	6.1 TCP/IP Connections
	6.2 TCP/IP Primer on IP Addresses
	6.2.1 IP Addresses Explained
	6.2.2 How IP Addresses are Used
	6.2.3 Dynamically Assigned Internet Addresses

	6.3 Placing Your Device on the Network
	6.4 Running TCP/IP Sample Programs
	6.4.1 How to Set IP Addresses in the Sample Programs
	6.4.2 How to Set Up your Computer for Direct Connect

	6.5 Run the PINGME.C Sample Program
	6.6 Running Additional Sample Programs With Direct Connect
	6.6.1 RabbitWeb Sample Programs
	6.6.2 Secure Sockets Layer (SSL) Sample Programs
	6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Modules

	6.7 Where Do I Go From Here?

	Appendix A. RCM3700 Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Conformal Coating
	A.6 Jumper Configurations

	Appendix B. Prototyping Board
	B.1 RCM3700 Prototyping Board
	B.1.1 Features
	B.1.2 Mechanical Dimensions and Layout
	B.1.3 Power Supply
	B.1.4 Using the RCM3700 Prototyping Board
	B.1.5 Analog Features
	B.1.6 Serial Communication
	B.1.7 Other Prototyping Board Modules
	B.1.8 Jumper Configurations
	B.1.9 Use of Rabbit 3000 Parallel Ports

	B.2 RCM3720 Prototyping Board
	B.2.1 Features
	B.2.2 Mechanical Dimensions and Layout
	B.2.3 Power Supply
	B.2.4 Using the RCM3720 Prototyping Board
	B.2.5 Serial Communication
	B.2.6 Use of Rabbit 3000 Parallel Ports


	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Contrast Adjustments for All Boards
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Install Connectors on Prototyping Board
	C.6 Mounting LCD/Keypad Module on the Prototyping Board
	C.7 Bezel-Mount Installation
	C.7.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.8 Sample Programs
	C.9 LCD/Keypad Module Function Calls
	C.9.1 LCD/Keypad Module Initialization
	C.9.2 LEDs
	C.9.3 LCD Display
	C.9.4 Keypad


	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Battery Backup
	D.1.2 Battery-Backup Circuit
	D.1.3 Reset Generator


	Appendix E. Secure Embedded Web Application Kit
	E.1 Sample Programs
	E.2 Module Documentation

	Index
	Schematics


