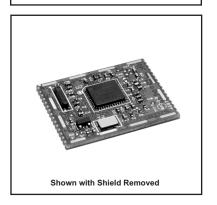


- 2.4 GHz ZigBee Transceiver Module
- Small Size, Light Weight, Low Cost
- Sleep Current less than 3 μA
- FCC and ETSI Certified for Unlicensed Operation


The ZMN2430 2.4 GHz transceiver module is a low cost solution for point-to-point, point-to-multipoint and MESH wireless systems. The ZMN2430 module provides the flexibility and versatility to serve applications ranging from cable replacements to sensor networks. Based on the IEEE 802.15.4 wireless standard and the ZigBee protocol stack, the ZMN2430 module is easy to integrate and provides robust wireless communications including MESH network operation. The ZMN2430 also includes Cirronet's powerful CSM application profile, which eliminates the need for customer firmware programming.

ZMN2430 Absolute Maximum Ratings

Rating	Value	Units
All Input/Output Pins	-0.3 to +3.6	V
Non-Operating Ambient Temperature Range	-40 to +85	°C

ZMN2430

ZigBee Transceiver Module

ZMN2430 Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency Range			2405		2480	MHz
Operating Frequency Tolerance			-300		300	kHz
Spread Spectrum Method			Direct Sequence			
Modulation Type			O-QPSK			
Number of RF Channels				16		
RF Data Transmission Rate				250		kb/s
Symbol Rate Tolerance					120	ppm
RF Channel Spacing				5		MHz
Receiver Sensitivity, 10E-5 BER				-92		dBm
Upper Adjacent Channel Rejection, +5 MHz				41		dB
Lower Adjacent Channel Rejection, -5 MHz				30		dB
Upper Alternate Channel Rejection, +10 MHz				55		dB
Lower Alternate Channel Rejection, -10 MHz				53		dB
Maximum RF Transmit Power			-3	0		dBm
Transmit Power Adjustment					26	dB
Optimum Antenna Impedance				50		Ω

ZMN2430 Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
ADC Input Range			0		3.3	V
ADC Input Resolution			7		12	bits
ADC Input Impedance			55			МΩ
PWM Output Resolution					12	bits
UART Baud Rate			1.2		115.2	kb/s
Digital I/O:						
Logic Low Input Level			-0.3		0.5	V
Logic High Input Level			2.8		3.6	V
Logic Input Internal Pull-up/Pull-down Resistor			20			ΚΩ
GPIO3 Logic Low Sink Current					20	mA
Power Supply Voltage Range	V _{CC}		+3.3		+5.5	Vdc
Power Supply Voltage Ripple					10	mV _{P-P}
Receive Mode Current				27		mA
Transmit Mode Current				28		mA
Sleep Mode Current					3	μA
Operating Temperature Range			-40		85	°C

CAUTION: Electrostatic Sensitive Device. Observe precautions when handling.

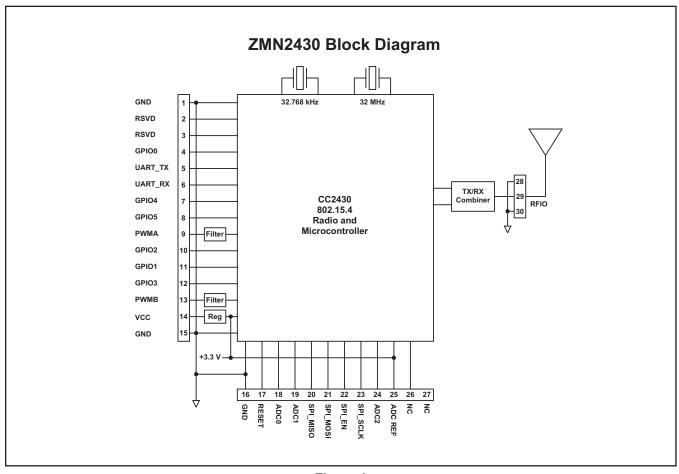


Figure 1

ZMN2430 Hardware

The major hardware component of the ZMN2430 is the CC2430 IEEE 802.15.4 compatible transceiver with integrated 8051 microcontroller. The ZMN2430 operates in the frequency band of 2405 to 2480 MHz at a nominal output power of 1 mW.

Two crystals are provided to operate the CC2430, a 32 MHz crystal for normal operation and a 32.768 kHz crystal for precision sleep mode operation.

The ZMN2430 provides a variety of application hardware interfaces including an SPI interface, UART interface, three 12-bit ADC inputs, two PWM (DAC) outputs, and six general purpose digital I/O ports.

ZMN2430 Firmware

The main firmware components in the ZMN2430 include the ZigBee protocol stack and the Cirronet Standard Module (CSM) application profile. The ZigBee

protocol stack implements networking and security, with underlying support from the 802.15.4 Media Access Control (MAC) layer. The standard ZMN2430 firmware implements a ZigBee full function device (FFD). This allows the module to operate as either a coordinator or router. Optional ZMN2430 firmware is available that implements a ZigBee reduced function device (RFD). This allows the module to operate as an end device. The CSM profile provides an application programming interface (API) for all the ZMN2430 application hardware interfaces. The CSM profile includes Network Discovery, Send/Receive Serial Data, Read/Write SPI Port, Read ADC Inputs, Write DAC Outputs, Read/Write GPIO and Module Configuration services. In addition, the CSM profile provides two sleep modes - timer sleep and interrupt sleep. See the for the ZMN2430 ZigBee Module Developer's Kit User's Manual for complete details of the CSM profile API.

ZMN2430 I/O Pad Descriptions

Pad	Name	Description
1	GND	Power supply and signal ground. Connect to the host circuit board ground.
2	RSVD	Reserved pin. Leave unconnected.
3	RSVD	Reserved pin. Leave unconnected.
4	GPIO0	Configurable digital I/O port 0. When configured as an output, the power-on state is also configurable.
5	UART_TX	Serial data output from UART.
6	UART_RX	Serial data input to UART.
7	GPIO4	Configurable digital I/O port 4. When configured as an output, the power-on state is also configurable.
8	GPIO5	Configurable digital I/O port 5. When configured as an output, the power-on state is also configurable.
9	PWMA	Pulse-width modulated output A with internal low-pass filter. Provides a DAC function.
10	GPIO2	Configurable digital I/O port 2. When configured as an output, the power-on state is also configurable.
11	GPIO1	Configurable digital I/O port 1. When configured as an output, the power-on state is also configurable.
12	GPIO3	Configurable digital I/O port 3. When configured as an output, this high current port can sink up to 20 mA. The power-on output state is also configurable.
13	PWMB	Pulse-width modulated output B with internal low-pass filter. Provides a DAC function.
14	VCC	Power supply input, +3.3 to +5.5 Vdc.
15	GND	Power supply and signal grounds. Connect to the host circuit board ground.
16	GND	Power supply and signal grounds. Connect to the host circuit board ground.
17	/RESET	Active low module hardware reset. Hold this input low when the power supply input is less than 2.7 Vdc.
18	ADCX	7-bit to 12-bit ADC input 0. ADC full scale reading can be referenced to the module's +3.3 V regulated suppy or to the ADC's internal +2.5 V reference.
19	ADCY	7-bit to 12-bit ADC input 1. ADC full scale reading can be referenced to the module's +3.3 V regulated suppy or to the ADC's internal +2.5 V reference.
20	SPI_MISO	SPI port data input.
21	SPI_MOSI	SPI port data output.
22	SPI_EN	Active-low enable output for SPI bus devices.
23	SPI_SCLK	SPI port clock signal.
24	ADCZ	7-bit to 12-bit ADC input 2. ADC full scale reading can be referenced to the module's +3.3 V regulated suppy or to the ADC's internal +2.5 V reference.
25	ADC REF	Module's +3.3 V regulated suppy, used for ratiometric ADC readings. Current drain on this output should be no greater than 5 mA.
26	NC	No connection.
27	NC	No connection.
28	GND	RF ground. Connect to the host circuit board ground plane, and to shield when using coaxial cable.
29	RFIO	RF port. Connect the antenna to this port with a 50 Ω stripline or semi-rigid coaxial cable.
30	GND	RF ground. Connect to the host circuit board ground plane, and to shield when using coaxial cable.

RFIO Stripline

The RFIO pad on the radio module is connected directly to an antenna on the host circuit board, or to an MMCX or similar RF connector. It is important that this connection be implemented as a 50 ohm stripline. Referring to Figure 3, the width of this stripline depends on the thickness of the circuit board between the stripline and the

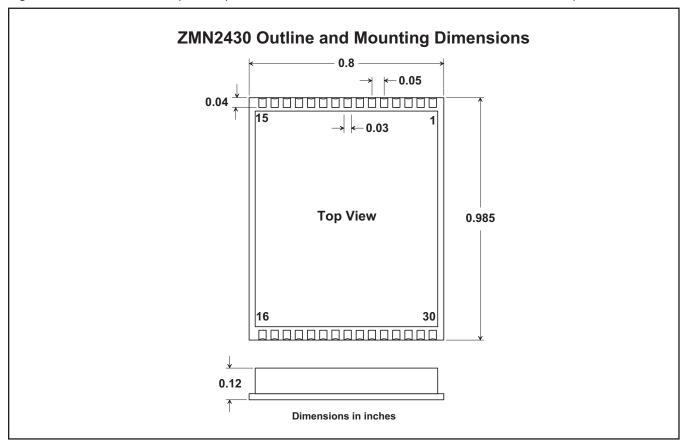
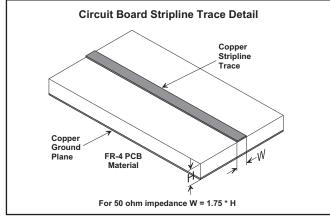



Figure 2

groundplane. For FR-4 type circuit board materials (dielectric constant of 4.7), the width of the stripline is equal to 1.75 times the thickness of the circuit board. Note that other circuit board traces should be spaced away from the stripline to prevent signal coupling, as shown in Figure 4. The stipline trace should be kept short to minimize its insertion loss.

Trace Separation from 50 Ohm Microstrip	Length of Trace Run Parallel to Microstrip			
100 mil	125 mil			
150 mil	200 mil			
200 mil	290 mil			
250 mil	450 mil			
300 mil	650 mil			

Figure 3

Figure 4

Reflow Profile

An example solder reflow profile for mounting the radio module on its host circuit board is shown in Figure 5.

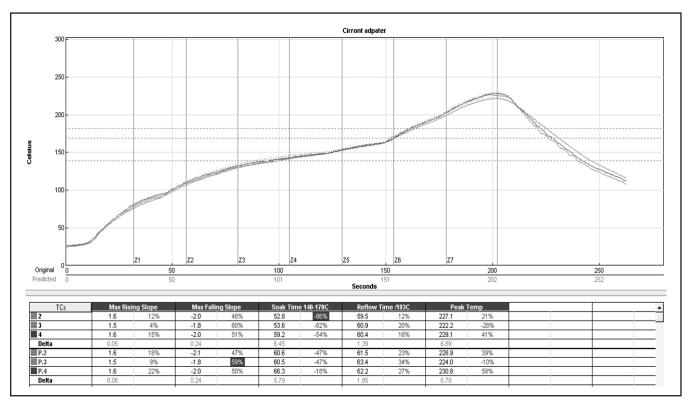


Figure 5

Note: Specifications subject to change without notice.